International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; Public Health Research Center at Jiangnan University, Wuxi 214122, China.
Anal Chim Acta. 2018 Jul 19;1014:19-26. doi: 10.1016/j.aca.2018.02.028. Epub 2018 Feb 20.
A novel and general strategy of split-type immunoassay is developed based on redox chemical reaction modulated photoelectrochemistry of carbon dots (CDs). Specifically, the photocurrent of the CDs sensitized titanium dioxide nanoparticles (TiO NPs) modified fluorine doped indium tin oxide (FTO) (that is the FTO/TiO/CDs) electrode was inhibited obviously by KMnO due to the oxidation of surface hydroxyl groups of CDs to electron accepting carbonyls. While the inhibited photocurrent of the KMnO treated FTO/TiO/CDs electrode can be restored by ascorbic acid (AA) because of the regeneration of electron donating hydroxyls to promote electron-hole separation. Take carcinoembryonic antigen (CEA) as a model analyte and alkaline phosphate (ALP) as a catalytic label tracer to hydrolyze ascorbic acid 2-phosphate (AAP) for producing AA, which greatly stimulated the photocurrent of the transducer of KMnO treated FTO/TiO/CDs photoelectrode for signal output. This redox chemical reaction modulated PEC strategy enabled the separation of the immunoreaction from the photoelectrode (that is, a split-type PEC detection), eliminating potential damage of biomolecules during the PEC detection processes and leading to enhanced throughput detection as compared to conventional PEC configurations. A low detection limit of 7.0 fg/mL was achieved for CEA. This convenient, split-type PEC immunoassay with high throughput may be easily extended to other bioaffinity assays for versatile targets.
基于氧化还原化学反应用于调制碳点(CDs)的光电化学,开发了一种新颖且通用的拆分型免疫分析策略。具体而言,由于 CDs 表面的羟基被氧化为电子接受型羰基,MnO 4- 可明显抑制经 TiO 2 纳米粒子(TiO NPs)敏化的 CDs 修饰的掺氟氧化铟锡(FTO)(即 FTO/TiO/CDs)电极的光电流。然而,由于电子供体羟基再生以促进电子-空穴分离,MnO 4- 处理的 FTO/TiO/CDs 电极的抑制光电流可被抗坏血酸(AA)还原。以癌胚抗原(CEA)为模型分析物,碱性磷酸酶(ALP)为催化标记示踪剂,水解抗坏血酸 2-磷酸(AAP)以产生 AA,这极大地刺激了经 MnO 4- 处理的 FTO/TiO/CDs 光电电极的换能器的光电流,用于信号输出。这种氧化还原化学反应用于调制的 PEC 策略实现了免疫反应与光电极的分离(即,拆分型 PEC 检测),消除了生物分子在 PEC 检测过程中潜在的损伤,并与传统的 PEC 配置相比,实现了更高的通量检测。CEA 的检测下限低至 7.0 fg/mL。这种便捷的、高通量的拆分型 PEC 免疫分析可能很容易扩展到其他生物亲和性测定,以用于多种目标物的测定。