Centre for Medical Imaging, Division of Medicine, University College London, London, United Kingdom
Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom.
J Nucl Med. 2018 Sep;59(9):1467-1473. doi: 10.2967/jnumed.117.191460. Epub 2018 Mar 9.
In PET imaging, patient motion due to respiration can lead to artifacts and blurring, in addition to quantification errors. The integration of PET imaging with MRI in PET/MRI scanners provides spatially aligned complementary clinical information and allows the use of high-contrast, high-spatial-resolution MR images to monitor and correct motion-corrupted PET data. On a patient cohort, we tested the ability of our joint PET/MRI-based predictive motion model to correct respiratory motion in PET and show it can improve lesion detectability and quantitation and reduce image artifacts. Using multiple tracers and multiple organ locations, we applied our motion correction method to 42 clinical PET/MRI patient datasets containing 162 PET-avid lesions. Quantitative changes were calculated using SUV changes in avid lesions. Lesion detectability changes were explored with a study in which 2 radiologists identified lesions in uncorrected and motion-corrected images and provided confidence scores. Mean increases of 12.4% for SUV and 17.6% for SUV after motion correction were found. In the detectability study, confidence scores for detecting avid lesions increased, with a rise in mean score from 2.67 to 3.01 (of 4) after motion correction and a rise in detection rate from 74% to 84%. Of 162 confirmed lesions, 49 showed an increase in all 3 metrics-SUV, SUV, and combined reader confidence score-whereas only 2 lesions showed a decrease. We also present clinical case studies demonstrating the effect that respiratory motion correction of PET data can have on patient management, with increased numbers of detected lesions, improved lesion sharpness and localization, and reduced attenuation-based artifacts. We demonstrated significant improvements in quantification and detection of PET-avid lesions, with specific case study examples showing where motion correction has the potential to affect diagnosis or patient care.
在 PET 成像中,由于呼吸引起的患者运动可能导致伪影和模糊,此外还会导致定量误差。将 PET 成像与 PET/MRI 扫描仪中的 MRI 相结合,提供了空间对齐的互补临床信息,并允许使用高对比度、高空间分辨率的 MR 图像来监测和校正运动伪影的 PET 数据。在患者队列中,我们测试了我们基于联合 PET/MRI 的预测运动模型校正 PET 中呼吸运动的能力,并表明它可以提高病变的可检测性和定量,并减少图像伪影。 使用多种示踪剂和多个器官位置,我们将我们的运动校正方法应用于包含 162 个 PET 阳性病变的 42 个临床 PET/MRI 患者数据集。使用阳性病变的 SUV 变化计算定量变化。通过一项研究探索了病变的可检测性变化,该研究由 2 名放射科医生在未校正和运动校正图像中识别病变并提供置信度评分。 发现 SUV 增加了 12.4%,SUV 增加了 17.6%。在可检测性研究中,检测阳性病变的置信度评分增加,校正后平均评分从 2.67 升至 3.01(满分 4 分),检测率从 74%升至 84%。在 162 个确诊的病变中,有 49 个病变的所有 3 项指标-SUV、SUV 和联合读者置信度评分均有所增加,而只有 2 个病变有所减少。我们还展示了临床病例研究,展示了 PET 数据呼吸运动校正对患者管理的影响,增加了检测到的病变数量,改善了病变的清晰度和定位,减少了基于衰减的伪影。 我们在量化和检测 PET 阳性病变方面取得了显著的改善,并通过具体的病例研究示例展示了运动校正有可能影响诊断或患者护理的地方。