Suppr超能文献

一种高通量突变扫描的固有无序酸性转录激活域。

A High-Throughput Mutational Scan of an Intrinsically Disordered Acidic Transcriptional Activation Domain.

机构信息

The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA; Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.

Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Center for Biological Systems Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA.

出版信息

Cell Syst. 2018 Apr 25;6(4):444-455.e6. doi: 10.1016/j.cels.2018.01.015. Epub 2018 Mar 7.

Abstract

Transcriptional activation domains are essential for gene regulation, but their intrinsic disorder and low primary sequence conservation have made it difficult to identify the amino acid composition features that underlie their activity. Here, we describe a rational mutagenesis scheme that deconvolves the function of four activation domain sequence features-acidity, hydrophobicity, intrinsic disorder, and short linear motifs-by quantifying the activity of thousands of variants in vivo and simulating their conformational ensembles using an all-atom Monte Carlo approach. Our results with a canonical activation domain from the Saccharomyces cerevisiae transcription factor Gcn4 reconcile existing observations into a unified model of its function: the intrinsic disorder and acidic residues keep two hydrophobic motifs from driving collapse. Instead, the most-active variants keep their aromatic residues exposed to the solvent. Our results illustrate how the function of intrinsically disordered proteins can be revealed by high-throughput rational mutagenesis.

摘要

转录激活结构域对于基因调控至关重要,但由于其固有无序性和低一级序列保守性,难以确定其活性所依赖的氨基酸组成特征。在这里,我们描述了一种合理的诱变方案,通过在体内量化数千种变体的活性并使用全原子蒙特卡罗方法模拟它们的构象集合,来分解四个激活结构域序列特征(酸度、疏水性、固有无序性和短线性基序)的功能。我们使用来自酿酒酵母转录因子 Gcn4 的典型激活结构域的结果将现有观察结果整合到其功能的统一模型中:固有无序性和酸性残基防止两个疏水性基序发生塌陷。相反,最活跃的变体使它们的芳香族残基暴露在溶剂中。我们的结果说明了如何通过高通量合理诱变来揭示固有无序蛋白的功能。

相似文献

1
A High-Throughput Mutational Scan of an Intrinsically Disordered Acidic Transcriptional Activation Domain.
Cell Syst. 2018 Apr 25;6(4):444-455.e6. doi: 10.1016/j.cels.2018.01.015. Epub 2018 Mar 7.
2
Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains.
Cell Syst. 2022 Apr 20;13(4):334-345.e5. doi: 10.1016/j.cels.2022.01.002. Epub 2022 Feb 3.
3
A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3506-13. doi: 10.1073/pnas.1412088111. Epub 2014 Aug 13.
6
A High-Throughput Screen for Transcription Activation Domains Reveals Their Sequence Features and Permits Prediction by Deep Learning.
Mol Cell. 2020 Jun 4;78(5):890-902.e6. doi: 10.1016/j.molcel.2020.04.020. Epub 2020 May 15.
7
Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region.
Phys Chem Chem Phys. 2016 Feb 17;18(8):5839-49. doi: 10.1039/c5cp06197k.
9
A new method for the construction of a mutant library with a predictable occurrence rate using Poisson distribution.
J Microbiol Methods. 2007 Jun;69(3):442-50. doi: 10.1016/j.mimet.2007.02.010. Epub 2007 Feb 28.

引用本文的文献

1
Cosmos: A Position-Resolution Causal Model for Direct and Indirect Effects in Protein Functions.
bioRxiv. 2025 Aug 4:2025.08.01.667517. doi: 10.1101/2025.08.01.667517.
4
Sequence-based prediction of intermolecular interactions driven by disordered regions.
Science. 2025 May 22;388(6749):eadq8381. doi: 10.1126/science.adq8381.
5
Deciphering disordered regions controlling mRNA decay in high-throughput.
Nature. 2025 Apr 23. doi: 10.1038/s41586-025-08919-x.
6
Identification of microproteins with transactivation activity by polyalanine motif selection.
RSC Chem Biol. 2025 Mar 6;6(5):800-808. doi: 10.1039/d4cb00277f. eCollection 2025 May 8.
7
MMRT: MultiMut Recursive Tree for predicting functional effects of high-order protein variants from low-order variants.
Comput Struct Biotechnol J. 2025 Feb 18;27:672-681. doi: 10.1016/j.csbj.2025.02.012. eCollection 2025.
8
Intrinsically disordered regions as facilitators of the transcription factor target search.
Nat Rev Genet. 2025 Jun;26(6):424-435. doi: 10.1038/s41576-025-00816-3. Epub 2025 Feb 21.
10
Versatile roles of disordered transcription factor effector domains in transcriptional regulation.
FEBS J. 2025 Jun;292(12):3014-3033. doi: 10.1111/febs.17424. Epub 2025 Jan 30.

本文引用的文献

1
Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9243-E9252. doi: 10.1073/pnas.1706083114. Epub 2017 Oct 12.
2
Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles.
Nat Chem. 2017 Nov;9(11):1118-1125. doi: 10.1038/nchem.2803. Epub 2017 Jun 26.
3
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6342-E6351. doi: 10.1073/pnas.1704692114. Epub 2017 Jul 17.
4
CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins.
Biophys J. 2017 Jan 10;112(1):16-21. doi: 10.1016/j.bpj.2016.11.3200.
5
Sequence Determinants of the Conformational Properties of an Intrinsically Disordered Protein Prior to and upon Multisite Phosphorylation.
J Am Chem Soc. 2016 Nov 30;138(47):15323-15335. doi: 10.1021/jacs.6b10272. Epub 2016 Nov 17.
6
Prospective functional classification of all possible missense variants in PPARG.
Nat Genet. 2016 Dec;48(12):1570-1575. doi: 10.1038/ng.3700. Epub 2016 Oct 17.
7
Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions.
PLoS Comput Biol. 2016 May 13;12(5):e1004935. doi: 10.1371/journal.pcbi.1004935. eCollection 2016 May.
8
Cryptic sequence features within the disordered protein p27Kip1 regulate cell cycle signaling.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5616-21. doi: 10.1073/pnas.1516277113. Epub 2016 May 2.
9
Genomic footprinting.
Nat Methods. 2016 Mar;13(3):213-21. doi: 10.1038/nmeth.3768.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验