Suppr超能文献

玫瑰栖粪杆菌中1,2-丙二醇脱水反应:底物和对映体选择性的结构基础

1,2-Propanediol Dehydration in Roseburia inulinivorans: STRUCTURAL BASIS FOR SUBSTRATE AND ENANTIOMER SELECTIVITY.

作者信息

LaMattina Joseph W, Keul Nicholas D, Reitzer Pierre, Kapoor Suraj, Galzerani Felipe, Koch Daniel J, Gouvea Iuri E, Lanzilotta William N

机构信息

From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602 and.

BRASKEM S.A., Rua Lemos Moonteiro, 120 Edifício Odebrecht São Paulo, Butantã 05501-050-São Paulo, SP Brasil.

出版信息

J Biol Chem. 2016 Jul 22;291(30):15515-26. doi: 10.1074/jbc.M116.721142. Epub 2016 Jun 1.

Abstract

Glycyl radical enzymes (GREs) represent a diverse superfamily of enzymes that utilize a radical mechanism to catalyze difficult, but often essential, chemical reactions. In this work we present the first biochemical and structural data for a GRE-type diol dehydratase from the organism Roseburia inulinivorans (RiDD). Despite high sequence (48% identity) and structural similarity to the GRE-type glycerol dehydratase from Clostridium butyricum, we demonstrate that the RiDD is in fact a diol dehydratase. In addition, the RiDD will utilize both (S)-1,2-propanediol and (R)-1,2-propanediol as a substrate, with an observed preference for the S enantiomer. Based on the new structural information we developed and successfully tested a hypothesis that explains the functional differences we observe.

摘要

甘氨酰自由基酶(GREs)是一类多样的酶超家族,它们利用自由基机制催化困难但往往至关重要的化学反应。在这项工作中,我们展示了来自食菊罗氏菌(RiDD)的GRE型二醇脱水酶的首个生化和结构数据。尽管与丁酸梭菌的GRE型甘油脱水酶具有高度的序列同一性(48%)和结构相似性,但我们证明RiDD实际上是一种二醇脱水酶。此外,RiDD将同时利用(S)-1,2-丙二醇和(R)-1,2-丙二醇作为底物,观察到其对S型对映体有偏好。基于新的结构信息,我们提出并成功验证了一个假设,该假设解释了我们观察到的功能差异。

相似文献

1
1,2-Propanediol Dehydration in Roseburia inulinivorans: STRUCTURAL BASIS FOR SUBSTRATE AND ENANTIOMER SELECTIVITY.
J Biol Chem. 2016 Jul 22;291(30):15515-26. doi: 10.1074/jbc.M116.721142. Epub 2016 Jun 1.
2
Characterization of 1,2-Propanediol Dehydratases Reveals Distinct Mechanisms for B-Dependent and Glycyl Radical Enzymes.
Biochemistry. 2018 Jun 12;57(23):3222-3226. doi: 10.1021/acs.biochem.8b00164. Epub 2018 Mar 16.
5
The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane-1,2-diol.
Eur J Biochem. 2002 Sep;269(18):4484-94. doi: 10.1046/j.1432-1033.2002.03151.x.
8
Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes.
FEMS Microbiol Rev. 1998 Dec;22(5):553-66. doi: 10.1111/j.1574-6976.1998.tb00387.x.

引用本文的文献

2
Genomic reconstruction of short-chain fatty acid production by the human gut microbiota.
Front Mol Biosci. 2022 Aug 11;9:949563. doi: 10.3389/fmolb.2022.949563. eCollection 2022.
3
Molecular basis of C-S bond cleavage in the glycyl radical enzyme isethionate sulfite-lyase.
Cell Chem Biol. 2021 Sep 16;28(9):1333-1346.e7. doi: 10.1016/j.chembiol.2021.03.001. Epub 2021 Mar 26.
4
Advances in the World of Bacterial Microcompartments.
Trends Biochem Sci. 2021 May;46(5):406-416. doi: 10.1016/j.tibs.2020.12.002. Epub 2021 Jan 11.
5
Sharing vitamins: Cobamides unveil microbial interactions.
Science. 2020 Jul 3;369(6499). doi: 10.1126/science.aba0165.
7
A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium .
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3171-3176. doi: 10.1073/pnas.1815661116. Epub 2019 Feb 4.
8
Glycyl Radical Enzyme-Associated Microcompartments: Redox-Replete Bacterial Organelles.
mBio. 2019 Jan 8;10(1):e02327-18. doi: 10.1128/mBio.02327-18.
9
Metabolic functions of the human gut microbiota: the role of metalloenzymes.
Nat Prod Rep. 2019 Apr 17;36(4):593-625. doi: 10.1039/c8np00074c.
10
Bacterial microcompartments.
Nat Rev Microbiol. 2018 May;16(5):277-290. doi: 10.1038/nrmicro.2018.10. Epub 2018 Mar 5.

本文引用的文献

1
Structure and Function of CutC Choline Lyase from Human Microbiota Bacterium Klebsiella pneumoniae.
J Biol Chem. 2015 Aug 28;290(35):21732-40. doi: 10.1074/jbc.M115.670471. Epub 2015 Jul 17.
2
Chemical and Biological Reduction of the Radical SAM Enzyme 7-Carboxy-7-deazaguanine [corrected] Synthase.
Biochemistry. 2015 May 12;54(18):2903-10. doi: 10.1021/acs.biochem.5b00210. Epub 2015 May 1.
3
Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10161-6. doi: 10.1073/pnas.1405983111. Epub 2014 Jun 30.
4
Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes.
ACS Chem Biol. 2014 Jul 18;9(7):1408-13. doi: 10.1021/cb500113p. Epub 2014 Jun 2.
5
Glycyl radical activating enzymes: structure, mechanism, and substrate interactions.
Arch Biochem Biophys. 2014 Mar 15;546:64-71. doi: 10.1016/j.abb.2014.01.020. Epub 2014 Jan 31.
6
Pyruvate formate-lyase and its activation by pyruvate formate-lyase activating enzyme.
J Biol Chem. 2014 Feb 28;289(9):5723-9. doi: 10.1074/jbc.M113.496877. Epub 2013 Dec 12.
8
Insights into the glycyl radical enzyme active site of benzylsuccinate synthase: a computational study.
J Am Chem Soc. 2013 Aug 21;135(33):12279-88. doi: 10.1021/ja404842r. Epub 2013 Aug 7.
9
Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21307-12. doi: 10.1073/pnas.1215689109. Epub 2012 Nov 14.
10
Glycerol dehydratation by the B12-independent enzyme may not involve the migration of a hydroxyl group: a computational study.
J Phys Chem B. 2012 Jun 21;116(24):7076-87. doi: 10.1021/jp301165b. Epub 2012 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验