Hubert D, Lambert J-C, Verhoelst T, Granville J, Keppens A, Baray J-L, Cortesi U, Degenstein D A, Froidevaux L, Godin-Beekmann S, Hoppel K W, Kyrölä E, Leblanc T, Lichtenberg G, McElroy C T, Murtagh D, Nakane H, Querel R, Russell J M, Salvador J, Smit H G J, Stebel K, Steinbrecht W, Strawbridge K B, Stübi R, Swart D P J, Taha G, Thompson A M, Urban J, van Gijsel J A E, von der Gathen P, Walker K A, Wolfram E, Zawodny J M
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium.
Laboratoire de l'Atmosphère et des Cyclones (Université de La Réunion, CNRS, Météo-France), OSU-Réunion (Université de la Réunion, CNRS), La Réunion, France.
Atmos Meas Tech. 2016;9(6):2497-2534. doi: 10.5194/amtd-8-6661-2015. Epub 2016 Jun 8.
The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20-40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5-12% and the drifts are at most ±5% decade (or even ±3 % decade for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
大量临边和掩星卫星仪器的臭氧廓线记录被广泛用于解决臭氧研究中的几个关键问题。某些领域的进一步进展取决于对这些数据集有更详细的了解,特别是其长期稳定性和相互一致性。为此,我们对14种临边和掩星探测仪进行了系统评估,这些探测仪共同提供了超过三十年的全球臭氧廓线测量数据。特别是,我们考虑了SAGE II、SAGE III、HALOE、UARS MLS、Aura MLS、POAM II、POAM III、OSIRIS、SMR、GOMOS、MIPAS、SCIAMACHY、ACE-FTS和MAESTRO的最新业务二级记录。我们工作的核心是对与地基臭氧探空仪和平流层臭氧激光雷达网络的比对进行一致且稳健的分析。这使我们能够从对流层到平流层顶研究卫星数据质量的以下主要方面:长期稳定性、总体偏差和短期变异性,以及它们对地球物理参数和廓线表示的依赖性。此外,它使我们能够量化臭氧廓线仪之间的总体一致性。一般来说,我们发现,在20至40公里之间,卫星臭氧测量偏差小于±5%,短期变异性小于5 - 12%,漂移最多为±5%/十年(对于一些记录甚至为±3%/十年)。与地基数据的一致性在接近平流层顶时会有所下降,特别是在对流层顶附近,那里的自然变异性和低臭氧丰度阻碍了更精确的分析。在平流层的部分区域,一些记录偏离了之前的一般结论;我们发现偏差达到10%及以上(POAM II和SCIAMACHY),单廓线变异性明显更高(SMR和SCIAMACHY),以及显著的长期漂移(SCIAMACHY、OSIRIS、HALOE,可能还有GOMOS和SMR)。此外,我们思考了我们的发现对合并数据记录的构建、分析和解释的影响。最值得注意的是,最近几次臭氧廓线趋势评估之间的差异大多可以由仪器漂移来解释。这清楚地表明需要进行系统全面的多仪器比对分析。