Yusseppone Maria S, Rocchetta Iara, Sabatini Sebastian E, Luquet Carlos M, Ríos de Molina Maria Del Carmen, Held Christoph, Abele Doris
Laboratorio de Enzimología, Estrés y Metabolismo, INQUIBICEN, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
Laboratorio de Ecotoxicología Acuática, INIBIOMA, Universidad Nacional del Comahue, Consejo Nacional de Investigaciones Científicas y Técnicas, Junín de los Andes, Argentina.
Front Physiol. 2018 Feb 23;9:100. doi: 10.3389/fphys.2018.00100. eCollection 2018.
Hypoxia in freshwater ecosystems is spreading as a consequence of global change, including pollution and eutrophication. In the Patagonian Andes, a decline in precipitation causes reduced lake water volumes and stagnant conditions that limit oxygen transport and exacerbate hypoxia below the upper mixed layer. We analyzed the molecular and biochemical response of the North Patagonian bivalve after 10 days of experimental anoxia (<0.2 mg O/L), hypoxia (2 mg O/L), and normoxia (9 mg O/L). Specifically, we investigated the expression of an alternative oxidase (AOX) pathway assumed to shortcut the regular mitochondrial electron transport system (ETS) during metabolic rate depression (MRD) in hypoxia-tolerant invertebrates. Whereas, the AOX system was strongly upregulated during anoxia in gills, ETS activities and energy mobilization decreased [less transcription of glycogen phosphorylase (GlyP) and succinate dehydrogenase (SDH) in gills and mantle]. Accumulation of succinate and induction of malate dehydrogenase (MDH) activity could indicate activation of anaerobic mitochondrial pathways to support anoxic survival in . Oxidative stress [protein carbonylation, glutathione peroxidase (GPx) expression] and apoptotic intensity (caspase 3/7 activity) decreased, whereas an unfolded protein response (HSP90) was induced under anoxia. This is the first clear evidence of the concerted regulation of the AOX and ETS genes in a hypoxia-tolerant freshwater bivalve and yet another example that exposure to hypoxia and anoxia is not necessarily accompanied by oxidative stress in hypoxia-tolerant mollusks.
由于包括污染和富营养化在内的全球变化,淡水生态系统中的缺氧现象正在蔓延。在巴塔哥尼亚安第斯山脉,降水量的减少导致湖泊水量减少和水体停滞,这限制了氧气的传输,并加剧了上层混合层以下的缺氧状况。我们分析了北巴塔哥尼亚双壳贝类在实验性缺氧(<0.2毫克O/L)、低氧(2毫克O/L)和常氧(9毫克O/L)条件下10天后的分子和生化反应。具体而言,我们研究了一种交替氧化酶(AOX)途径的表达,该途径被认为在耐缺氧无脊椎动物代谢率降低(MRD)期间会绕过常规的线粒体电子传递系统(ETS)。然而,在鳃中缺氧期间AOX系统强烈上调,ETS活性和能量动员下降[鳃和外套膜中糖原磷酸化酶(GlyP)和琥珀酸脱氢酶(SDH)的转录减少]。琥珀酸的积累和苹果酸脱氢酶(MDH)活性的诱导可能表明厌氧线粒体途径的激活,以支持其在缺氧环境中的生存。氧化应激[蛋白质羰基化、谷胱甘肽过氧化物酶(GPx)表达]和凋亡强度(半胱天冬酶3/7活性)降低,而在缺氧条件下诱导了未折叠蛋白反应(HSP90)。这是耐缺氧淡水双壳贝类中AOX和ETS基因协同调控的首个明确证据,也是另一个例子,表明耐缺氧软体动物暴露于低氧和缺氧环境时不一定会伴随氧化应激。