Suppr超能文献

潮间带无脊椎动物对环境低氧的代谢适应(环境缺氧与运动性缺氧的比较)

Metabolic adaptations of intertidal invertebrates to environmental hypoxia (a comparison of environmental anoxia to exercise anoxia).

作者信息

De Zwaan A, Putzer V

出版信息

Symp Soc Exp Biol. 1985;39:33-62.

PMID:3914721
Abstract

By comparing environmental anaerobiosis with exercise anaerobiosis it appears that animals with high anoxia tolerance use (partly) different types of metabolic reactions to sustain energy metabolism, whereas low tolerance animals (Arthropoda, Echinodermata, Vertebrata) use the same pathway under both conditions. During exercise anaerobiosis the classical glycolysis (lactate pathway) is a main pathway among all multicellular organisms, although in marine invertebrates--except the Arthropoda and Echinodermata--it mostly does not terminate in lactate. During environmental anaerobiosis Cnidaria, Mollusca, Annelida and Sipunculida first couple additional pathways for energy extraction to the glycolytic pathway (the aspartate--succinate pathway) and later deviate the main carbon flow of glycogen at the level of phosphoenolpyruvate towards succinate, propionate and acetate production. Metabolic adaptations to anoxic cellular conditions in these groups are high fuel stores, increased ATP yield by anaerobic sources, formation of easily excretable (volatile) end products, an aspartate-dependent system for transport of hydrogen through the inner membrane of the mitochondrion and a rapid recovery from anaerobic metabolism. During anaerobic conditions three sources can contribute to the anaerobic power output, endogenous stores of both ATP and phosphagen and catabolism. Anaerobic power output rates have been calculated for a number of Mollusca, Annelida and Crustacea. Extreme anoxia resistance is coupled to a strongly reduced metabolic rate. In animals with high aspartate stores, the aspartate--succinate pathway and phosphagen hydrolysis can provide sufficient ATP during environmental anaerobiosis; however, with exercise anaerobiosis when ATP turnover rates may be increased by a factor of 20, pyruvate derivatives simultaneously accumulate in high amounts relative to succinate.

摘要

通过比较环境性无氧状态与运动性无氧状态可知,高耐缺氧性动物(部分)使用不同类型的代谢反应来维持能量代谢,而低耐缺氧性动物(节肢动物、棘皮动物、脊椎动物)在两种情况下都使用相同的途径。在运动性无氧状态下,经典糖酵解(乳酸途径)是所有多细胞生物中的主要途径,尽管在海洋无脊椎动物中——除节肢动物和棘皮动物外——它大多不会以乳酸为终点。在环境性无氧状态下,刺胞动物门、软体动物门、环节动物门和星虫动物门首先将额外的能量提取途径与糖酵解途径(天冬氨酸 - 琥珀酸途径)相耦合,随后在磷酸烯醇丙酮酸水平将糖原的主要碳流转向琥珀酸、丙酸和乙酸的生成。这些类群对缺氧细胞条件的代谢适应包括高燃料储备、厌氧源增加ATP产量、形成易于排泄(挥发性)的终产物、通过线粒体内膜运输氢的天冬氨酸依赖性系统以及从无氧代谢中快速恢复。在无氧条件下,有三个来源可促成无氧功率输出,即ATP和磷酸原的内源性储备以及分解代谢。已经计算了一些软体动物、环节动物和甲壳纲动物的无氧功率输出率。极端的抗缺氧能力与代谢率的大幅降低相关。在天冬氨酸储备高的动物中,天冬氨酸 - 琥珀酸途径和磷酸原水解在环境性无氧状态下可提供足够的ATP;然而,在运动性无氧状态下,当ATP周转率可能增加20倍时,丙酮酸衍生物相对于琥珀酸会同时大量积累。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验