Suppr超能文献

人 ABCC4/MRP4 外排泵在脂质双层中的结构模式解释了临床上观察到的多态性。

Structural patterns of the human ABCC4/MRP4 exporter in lipid bilayers rationalize clinically observed polymorphisms.

机构信息

U1248 INSERM, Univ. Limoges, Fac. Pharmacy, 2 rue du Dr Marcland, 87025, Limoges, France; RCPTM, Department of Physical Chemistry, Fac. Sciences, Palacký University, Olomouc, Czech Republic.

U1248 INSERM, Univ. Limoges, Fac. Pharmacy, 2 rue du Dr Marcland, 87025, Limoges, France.

出版信息

Pharmacol Res. 2018 Jul;133:318-327. doi: 10.1016/j.phrs.2018.02.029. Epub 2018 Mar 10.

Abstract

The ABCC4/MRP4 exporter has a clinical impact on membrane transport of a broad range of xenobiotics. It is expressed at key locations for drug disposition or effects such as in the liver, the kidney and blood cells. Several polymorphisms and mutations (e.g., p.Gly187Trp) leading to MRP4 dysfunction are associated with an increased risk of toxicity of some drugs. So far, no human MRP4 structure has been elucidated, precluding rationalization of these dysfunctions at a molecular level. We constructed an atomistic model of the wild type (WT) MRP4 and the p.Gly187Trp mutant embedded in different lipid bilayers and relaxed them for hundreds of nanoseconds by molecular dynamics simulations. The WT MRP4 molecular structure confirmed and ameliorated the general knowledge about the transmembrane helices and the two nucleotide binding domains. Moreover, our model elucidated positions of three generally unresolved domains: L (linker between the two halves of the exporter); L (N-terminal domain); and the zipper helices (between the two NBDs). Each domain was thoroughly described in view of its function. The p.Gly187Trp mutation induced a huge structural impact on MRP4, mainly affecting NBD 1 structure and flexibility. The structure of transporter enabled rationalization of known dysfunctions associated with polymorphism of MRP4. This model is available to the pharmacology community to decipher the impact of any other clinically observed polymorphism and mutation on drug transport, giving rise to in silico predictive pharmacogenetics.

摘要

ABCC4/MRP4 外排泵对广泛的外来化合物的膜转运具有临床影响。它在药物处置或作用的关键部位表达,如肝脏、肾脏和血细胞。一些导致 MRP4 功能障碍的多态性和突变(例如,p.Gly187Trp)与某些药物毒性增加的风险相关。到目前为止,还没有阐明人类 MRP4 的结构,这使得无法在分子水平上合理化这些功能障碍。我们构建了野生型(WT)MRP4 和嵌入不同脂质双层的 p.Gly187Trp 突变体的原子模型,并通过分子动力学模拟对它们进行了数百纳秒的松弛。WT MRP4 分子结构证实并改善了关于跨膜螺旋和两个核苷酸结合结构域的一般知识。此外,我们的模型阐明了三个通常未解决的结构域的位置:L(外排泵两半之间的连接子);L(N 端结构域);和拉链螺旋(在两个 NBD 之间)。每个结构域都根据其功能进行了详细描述。p.Gly187Trp 突变对 MRP4 产生了巨大的结构影响,主要影响 NBD 1 的结构和灵活性。转运蛋白的结构使我们能够合理化与 MRP4 多态性相关的已知功能障碍。该模型可供药理学社区用于破译任何其他临床上观察到的多态性和突变对药物转运的影响,从而产生基于计算机的预测性药物遗传学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验