INSERM U1248 Pharmacology & Transplantation, CBRS, Faculté de Médecine et Pharmacie, Univ. Limoges, 2 rue du prof. Descottes, 87000, Limoges, France.
InSiliBio, Ester Technopôle, 1 avenue d'Ester, 87000, Limoges, France.
Sci Rep. 2022 Apr 29;12(1):7057. doi: 10.1038/s41598-022-10755-2.
The human SLC22A6/OAT1 plays an important role in the elimination of a broad range of endogenous substances and xenobiotics thus attracting attention from the pharmacological community. Furthermore, OAT1 is also involved in key physiological events such as the remote inter-organ communication. Despite its significance, the knowledge about hOAT1 structure and the transport mechanism at the atomic level remains fragmented owing to the lack of resolved structures. By means of protein-threading modeling refined by μs-scaled Molecular Dynamics simulations, the present study provides the first robust model of hOAT1 in outward-facing conformation. Taking advantage of the AlphaFold 2 predicted structure of hOAT1 in inward-facing conformation, we here provide the essential structural and functional features comparing both states. The intracellular motifs conserved among Major Facilitator Superfamily members create a so-called "charge-relay system" that works as molecular switches modulating the conformation. The principal element of the event points at interactions of charged residues that appear crucial for the transporter dynamics and function. Moreover, hOAT1 model was embedded in different lipid bilayer membranes highlighting the crucial structural dependence on lipid-protein interactions. MD simulations supported the pivotal role of phosphatidylethanolamine components to the protein conformation stability. The present model is made available to decipher the impact of any observed polymorphism and mutation on drug transport as well as to understand substrate binding modes.
人类 SLC22A6/OAT1 在消除广泛的内源性物质和外源性物质方面发挥着重要作用,因此引起了药理学领域的关注。此外,OAT1 还参与了关键的生理事件,如远程器官间通讯。尽管它意义重大,但由于缺乏已解决的结构,关于 hOAT1 结构和原子水平运输机制的知识仍然零散。本研究通过蛋白质穿线建模,并通过微秒尺度分子动力学模拟进行细化,提供了外向构象中 hOAT1 的首个稳健模型。利用 AlphaFold 2 预测的 hOAT1 内向构象的结构,我们在此提供了比较两种状态的基本结构和功能特征。主要易化因子超家族成员之间保守的细胞内基序形成了所谓的“电荷传递系统”,作为调节构象的分子开关。事件的主要元素在于带电残基的相互作用,这些相互作用对于转运体的动力学和功能至关重要。此外,hOAT1 模型被嵌入到不同的脂质双层膜中,突出了脂质-蛋白相互作用对结构的关键依赖性。MD 模拟支持了磷脂酰乙醇胺成分对蛋白质构象稳定性的关键作用。该模型可用于破译任何观察到的多态性和突变对药物转运的影响,并理解底物结合模式。