Suppr超能文献

细菌通过调控 RNA 对抗生素的适应性。

Bacterial Adaptation to Antibiotics through Regulatory RNAs.

机构信息

U1230 Inserm Unit, Biochimie Pharmaceutique, University of Rennes 1, Rennes, France

U1230 Inserm Unit, Biochimie Pharmaceutique, University of Rennes 1, Rennes, France.

出版信息

Antimicrob Agents Chemother. 2018 Apr 26;62(5). doi: 10.1128/AAC.02503-17. Print 2018 May.

Abstract

The extensive use of antibiotics has resulted in a situation where multidrug-resistant pathogens have become a severe menace to human health worldwide. A deeper understanding of the principles used by pathogens to adapt to, respond to, and resist antibiotics would pave the road to the discovery of drugs with novel mechanisms. For bacteria, antibiotics represent clinically relevant stresses that induce protective responses. The recent implication of regulatory RNAs (small RNAs [sRNAs]) in antibiotic response and resistance in several bacterial pathogens suggests that they should be considered innovative drug targets. This minireview discusses sRNA-mediated mechanisms exploited by bacterial pathogens to fight against antibiotics. A critical discussion of the newest findings in the field is provided, with emphasis on the implication of sRNAs in major mechanisms leading to antibiotic resistance, including drug uptake, active drug efflux, drug target modifications, biofilms, cell walls, and lipopolysaccharide (LPS) biosynthesis. Of interest is the lack of knowledge about sRNAs implicated in Gram-positive compared to Gram-negative bacterial resistance.

摘要

抗生素的广泛使用导致了多药耐药病原体成为全球人类健康的严重威胁。深入了解病原体适应、应对和抵抗抗生素的原理将为发现具有新机制的药物铺平道路。对于细菌来说,抗生素是一种具有临床相关性的应激源,会诱导产生保护反应。最近的研究表明,调控 RNA(小 RNA [sRNA])在几种细菌病原体对抗生素的反应和耐药性中发挥作用,这表明它们应该被视为创新的药物靶点。这篇综述讨论了细菌病原体利用 sRNA 来对抗抗生素的机制。本文对该领域的最新发现进行了批判性讨论,重点讨论了 sRNA 在导致抗生素耐药性的主要机制中的作用,包括药物摄取、主动药物外排、药物靶标修饰、生物膜、细胞壁和脂多糖 (LPS) 生物合成。值得注意的是,与革兰氏阴性细菌耐药性相比,人们对革兰氏阳性细菌中涉及的 sRNA 知之甚少。

相似文献

1
Bacterial Adaptation to Antibiotics through Regulatory RNAs.
Antimicrob Agents Chemother. 2018 Apr 26;62(5). doi: 10.1128/AAC.02503-17. Print 2018 May.
2
Systematic analysis of the role of bacterial Hfq-interacting sRNAs in the response to antibiotics.
J Antimicrob Chemother. 2015;70(6):1659-68. doi: 10.1093/jac/dkv042. Epub 2015 Feb 26.
3
Understanding efflux in Gram-negative bacteria: opportunities for drug discovery.
Expert Opin Drug Discov. 2012 Jul;7(7):633-42. doi: 10.1517/17460441.2012.688949. Epub 2012 May 19.
4
Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets.
Front Microbiol. 2017 May 5;8:803. doi: 10.3389/fmicb.2017.00803. eCollection 2017.
5
Emergence of armA and rmtB genes among VIM, NDM, and IMP metallo-β-lactamase-producing multidrug-resistant Gram-negative pathogens.
Acta Microbiol Immunol Hung. 2018 Mar 1;65(1):107-118. doi: 10.1556/030.64.2017.027. Epub 2017 Sep 5.
6
Networks of Resistance: Small RNA Control of Antibiotic Resistance.
Trends Genet. 2021 Jan;37(1):35-45. doi: 10.1016/j.tig.2020.08.016. Epub 2020 Sep 17.
8
9
Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria.
PLoS One. 2017 Aug 24;12(8):e0183263. doi: 10.1371/journal.pone.0183263. eCollection 2017.
10
Molecular determinants of AcrB-mediated bacterial efflux implications for drug discovery.
J Med Chem. 2012 Mar 22;55(6):2532-7. doi: 10.1021/jm201275d. Epub 2012 Jan 27.

引用本文的文献

1
Nucleomodulins from gut bacteria: diverse mechanisms of translocation and interaction with host nuclear processes.
Appl Environ Microbiol. 2025 Aug 20;91(8):e0021125. doi: 10.1128/aem.00211-25. Epub 2025 Jul 18.
2
The Invisible Threat of Antibiotic Resistance in Food.
Antibiotics (Basel). 2025 Mar 1;14(3):250. doi: 10.3390/antibiotics14030250.
4
'GGFGGQ' repeats in Hfq of Acinetobacter baumannii are essential for nutrient utilization and virulence.
J Biol Chem. 2024 Dec;300(12):107895. doi: 10.1016/j.jbc.2024.107895. Epub 2024 Oct 17.
9
RNA cis-regulators are important for Streptococcus pneumoniae in vivo success.
PLoS Genet. 2024 Mar 5;20(3):e1011188. doi: 10.1371/journal.pgen.1011188. eCollection 2024 Mar.
10
Old Folks, Bad Boon: Antimicrobial Resistance in the Infant Gut Microbiome.
Microorganisms. 2023 Jul 27;11(8):1907. doi: 10.3390/microorganisms11081907.

本文引用的文献

2
Discovery of new RNA classes and global RNA-binding proteins.
Curr Opin Microbiol. 2017 Oct;39:152-160. doi: 10.1016/j.mib.2017.11.016. Epub 2017 Nov 24.
3
New aspects of RNA-based regulation by Hfq and its partner sRNAs.
Curr Opin Microbiol. 2018 Apr;42:53-61. doi: 10.1016/j.mib.2017.10.014. Epub 2017 Nov 7.
4
Impact of bacterial sRNAs in stress responses.
Biochem Soc Trans. 2017 Dec 15;45(6):1203-1212. doi: 10.1042/BST20160363. Epub 2017 Nov 3.
5
When eukaryotes and prokaryotes look alike: the case of regulatory RNAs.
FEMS Microbiol Rev. 2017 Sep 1;41(5):624-639. doi: 10.1093/femsre/fux038.
8
Lessons from the Environmental Antibiotic Resistome.
Annu Rev Microbiol. 2017 Sep 8;71:309-329. doi: 10.1146/annurev-micro-090816-093420. Epub 2017 Jun 28.
9
Structural Basis for Ribosome Rescue in Bacteria.
Trends Biochem Sci. 2017 Aug;42(8):669-680. doi: 10.1016/j.tibs.2017.05.009. Epub 2017 Jun 16.
10
Burden of antimicrobial resistance in an era of decreasing susceptibility.
Expert Rev Anti Infect Ther. 2017 Jul;15(7):663-676. doi: 10.1080/14787210.2017.1337508. Epub 2017 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验