Suppr超能文献

POLARIS:用于全基因组关联研究(GWAS)数据基于集合分析的多基因连锁不平衡调整风险评分方法。

POLARIS: Polygenic LD-adjusted risk score approach for set-based analysis of GWAS data.

作者信息

Baker Emily, Schmidt Karl Michael, Sims Rebecca, O'Donovan Michael C, Williams Julie, Holmans Peter, Escott-Price Valentina, Consortium With The Gerad

机构信息

Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, United Kingdom.

School of Mathematics, Cardiff University, United Kingdom.

出版信息

Genet Epidemiol. 2018 Jun;42(4):366-377. doi: 10.1002/gepi.22117. Epub 2018 Mar 12.

Abstract

Polygenic risk scores (PRSs) are a method to summarize the additive trait variance captured by a set of SNPs, and can increase the power of set-based analyses by leveraging public genome-wide association study (GWAS) datasets. PRS aims to assess the genetic liability to some phenotype on the basis of polygenic risk for the same or different phenotype estimated from independent data. We propose the application of PRSs as a set-based method with an additional component of adjustment for linkage disequilibrium (LD), with potential extension of the PRS approach to analyze biologically meaningful SNP sets. We call this method POLARIS: POlygenic Ld-Adjusted RIsk Score. POLARIS identifies the LD structure of SNPs using spectral decomposition of the SNP correlation matrix and replaces the individuals' SNP allele counts with LD-adjusted dosages. Using a raw genotype dataset together with SNP effect sizes from a second independent dataset, POLARIS can be used for set-based analysis. MAGMA is an alternative set-based approach employing principal component analysis to account for LD between markers in a raw genotype dataset. We used simulations, both with simple constructed and real LD-structure, to compare the power of these methods. POLARIS shows more power than MAGMA applied to the raw genotype dataset only, but less or comparable power to combined analysis of both datasets. POLARIS has the advantages that it produces a risk score per person per set using all available SNPs, and aims to increase power by leveraging the effect sizes from the discovery set in a self-contained test of association in the test dataset.

摘要

多基因风险评分(PRSs)是一种总结一组单核苷酸多态性(SNPs)所捕获的加性性状变异的方法,并且可以通过利用公开的全基因组关联研究(GWAS)数据集来提高基于集合的分析效能。PRS旨在根据从独立数据估计的相同或不同表型的多基因风险来评估某种表型的遗传易感性。我们提出将PRS作为一种基于集合的方法应用,并增加一个连锁不平衡(LD)调整的组成部分,同时有可能扩展PRS方法以分析具有生物学意义的SNP集合。我们将这种方法称为POLARIS:多基因LD调整风险评分。POLARIS使用SNP相关矩阵的谱分解来识别SNP的LD结构,并用LD调整后的剂量替代个体的SNP等位基因计数。结合一个原始基因型数据集和来自另一个独立数据集的SNP效应大小,POLARIS可用于基于集合的分析。MAGMA是另一种基于集合的方法,它采用主成分分析来考虑原始基因型数据集中标记之间的LD。我们使用了具有简单构建和真实LD结构的模拟来比较这些方法的效能。POLARIS在仅应用于原始基因型数据集时比MAGMA表现出更高的效能,但在对两个数据集进行联合分析时效能较低或相当。POLARIS的优点在于它使用所有可用的SNP为每组每人产生一个风险评分,并旨在通过在测试数据集中的自包含关联测试中利用发现集的效应大小来提高效能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be54/6001515/7eda1fac340c/GEPI-42-366-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验