Suppr超能文献

氯胺酮作为抗抑郁药的作用机制。

Mechanisms of ketamine action as an antidepressant.

机构信息

Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.

Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.

出版信息

Mol Psychiatry. 2018 Apr;23(4):801-811. doi: 10.1038/mp.2017.255. Epub 2018 Mar 13.

Abstract

Clinical studies have demonstrated that a single sub-anesthetic dose of the dissociative anesthetic ketamine induces rapid and sustained antidepressant actions. Although this finding has been met with enthusiasm, ketamine's widespread use is limited by its abuse potential and dissociative properties. Recent preclinical research has focused on unraveling the molecular mechanisms underlying the antidepressant actions of ketamine in an effort to develop novel pharmacotherapies, which will mimic ketamine's antidepressant actions but lack its undesirable effects. Here we review hypotheses for the mechanism of action of ketamine as an antidepressant, including synaptic or GluN2B-selective extra-synaptic N-methyl-D-aspartate receptor (NMDAR) inhibition, inhibition of NMDARs localized on GABAergic interneurons, inhibition of NMDAR-dependent burst firing of lateral habenula neurons, and the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor activation. We also discuss links between ketamine's antidepressant actions and downstream mechanisms regulating synaptic plasticity, including brain-derived neurotrophic factor (BDNF), eukaryotic elongation factor 2 (eEF2), mechanistic target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3). Mechanisms that do not involve direct inhibition of the NMDAR, including a role for ketamine's (R)-ketamine enantiomer and hydroxynorketamine (HNK) metabolites, specifically (2R,6R)-HNK, are also discussed. Proposed mechanisms of ketamine's action are not mutually exclusive and may act in a complementary manner to exert acute changes in synaptic plasticity, leading to sustained strengthening of excitatory synapses, which are necessary for antidepressant behavioral actions. Understanding the molecular mechanisms underpinning ketamine's antidepressant actions will be invaluable for the identification of targets, which will drive the development of novel, effective, next-generation pharmacotherapies for the treatment of depression.

摘要

临床研究表明,单次亚麻醉剂量的分离麻醉剂氯胺酮可快速且持续地产生抗抑郁作用。尽管这一发现令人兴奋,但氯胺酮的广泛应用受到其滥用潜力和分离特性的限制。最近的临床前研究集中在阐明氯胺酮抗抑郁作用的分子机制,以努力开发新的药物治疗方法,这些方法将模拟氯胺酮的抗抑郁作用,但缺乏其不良作用。在这里,我们综述了氯胺酮作为抗抑郁药的作用机制的假说,包括突触或 GluN2B 选择性的突触外 N-甲基-D-天冬氨酸受体(NMDAR)抑制、抑制 GABA 能中间神经元上的 NMDAR、抑制外侧缰核神经元的 NMDAR 依赖性爆发放电,以及 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体激活的作用。我们还讨论了氯胺酮的抗抑郁作用与调节突触可塑性的下游机制之间的联系,包括脑源性神经营养因子(BDNF)、真核延伸因子 2(eEF2)、雷帕霉素靶蛋白(mTOR)和糖原合成酶激酶-3(GSK-3)。还讨论了不涉及 NMDAR 直接抑制的机制,包括氯胺酮的(R)-氯胺酮对映异构体和羟基去甲氯胺酮(HNK)代谢物的作用,特别是(2R,6R)-HNK。氯胺酮作用的拟议机制并非相互排斥,可能以互补的方式发挥作用,导致突触可塑性的急性变化,从而持续增强兴奋性突触,这是抗抑郁行为作用所必需的。了解氯胺酮抗抑郁作用的分子机制对于确定靶点至关重要,这将推动开发新的、有效的、下一代抗抑郁药物治疗方法。

相似文献

1
Mechanisms of ketamine action as an antidepressant.
Mol Psychiatry. 2018 Apr;23(4):801-811. doi: 10.1038/mp.2017.255. Epub 2018 Mar 13.
2
The role of eEF2 kinase in the rapid antidepressant actions of ketamine.
Adv Pharmacol. 2020;89:79-99. doi: 10.1016/bs.apha.2020.04.005. Epub 2020 May 22.
3
NMDA Receptor Activation-Dependent Antidepressant-Relevant Behavioral and Synaptic Actions of Ketamine.
J Neurosci. 2023 Feb 8;43(6):1038-1050. doi: 10.1523/JNEUROSCI.1316-22.2022. Epub 2023 Jan 3.
5
Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2,6)-hydroxynorketamine.
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):297-302. doi: 10.1073/pnas.1814709116. Epub 2018 Dec 17.
6
NMDAR inhibition-independent antidepressant actions of ketamine metabolites.
Nature. 2016 May 26;533(7604):481-6. doi: 10.1038/nature17998. Epub 2016 May 4.
8
Antidepressant-relevant concentrations of the ketamine metabolite (2,6)-hydroxynorketamine do not block NMDA receptor function.
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5160-5169. doi: 10.1073/pnas.1816071116. Epub 2019 Feb 22.
9
Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition.
Neuropharmacology. 2016 Jan;100:17-26. doi: 10.1016/j.neuropharm.2015.07.028. Epub 2015 Jul 26.
10
Synaptic mechanisms underlying rapid antidepressant action of ketamine.
Am J Psychiatry. 2012 Nov;169(11):1150-6. doi: 10.1176/appi.ajp.2012.12040531.

引用本文的文献

1
A selective review of inhibitors of protein kinase C gamma: a neuroplasticity-related common pathway for psychiatric illness.
Front Drug Deliv. 2024 Sep 13;4:1364037. doi: 10.3389/fddev.2024.1364037. eCollection 2024.
2
Glutamatergic lateral habenula neurons modulate consolidation of associative memories.
Front Behav Neurosci. 2025 Jul 29;19:1646689. doi: 10.3389/fnbeh.2025.1646689. eCollection 2025.
3
S-ketamine facilitates motor function recovery after brachial plexus root avulsion and reimplantation in mice.
Front Pharmacol. 2025 Jul 23;16:1630158. doi: 10.3389/fphar.2025.1630158. eCollection 2025.
4
Transcriptional profiling of antidepressant ketamine and electroconvulsive therapy treatment.
medRxiv. 2025 Jul 29:2025.07.29.25332162. doi: 10.1101/2025.07.29.25332162.
8
Exploring the Neuroprotective and Neuropsychiatric Symptom Management Potential of Ketamine in Alzheimer's Disease.
Cureus. 2025 Jun 27;17(6):e86855. doi: 10.7759/cureus.86855. eCollection 2025 Jun.
9
Successful Treatment of Functional Neurologic Symptom Disorder (Conversion Disorder) With Subdissociative Dose Ketamine in the Emergency Department.
J Am Coll Emerg Physicians Open. 2025 Jul 17;6(5):100220. doi: 10.1016/j.acepjo.2025.100220. eCollection 2025 Oct.

本文引用的文献

1
Convergent Mechanisms Underlying Rapid Antidepressant Action.
CNS Drugs. 2018 Mar;32(3):197-227. doi: 10.1007/s40263-018-0492-x.
2
Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.
Nature. 2018 Feb 14;554(7692):317-322. doi: 10.1038/nature25509.
3
Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression.
Nature. 2018 Feb 14;554(7692):323-327. doi: 10.1038/nature25752.
5
Lateral habenula in the pathophysiology of depression.
Curr Opin Neurobiol. 2018 Feb;48:90-96. doi: 10.1016/j.conb.2017.10.024. Epub 2017 Nov 23.
6
Common Neurotransmission Recruited in (R,S)-Ketamine and (2R,6R)-Hydroxynorketamine-Induced Sustained Antidepressant-like Effects.
Biol Psychiatry. 2018 Jul 1;84(1):e3-e6. doi: 10.1016/j.biopsych.2017.10.020. Epub 2017 Oct 26.
7
Intracellular Signaling Pathways Involved in (S)- and (R)-Ketamine Antidepressant Actions.
Biol Psychiatry. 2018 Jan 1;83(1):2-4. doi: 10.1016/j.biopsych.2017.10.026.
8
Synthesis and N-Methyl-d-aspartate (NMDA) Receptor Activity of Ketamine Metabolites.
Org Lett. 2017 Sep 1;19(17):4572-4575. doi: 10.1021/acs.orglett.7b02177. Epub 2017 Aug 22.
9
Zanos et al. reply.
Nature. 2017 Jun 21;546(7659):E4-E5. doi: 10.1038/nature22085.
10
Effects of a ketamine metabolite on synaptic NMDAR function.
Nature. 2017 Jun 21;546(7659):E1-E3. doi: 10.1038/nature22084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验