Suppr超能文献

膀胱癌差异表达基因及通路的鉴定。

Identification of differentially expressed genes and biological pathways in bladder cancer.

机构信息

Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China.

Nanshan College of Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.

出版信息

Mol Med Rep. 2018 May;17(5):6425-6434. doi: 10.3892/mmr.2018.8711. Epub 2018 Mar 9.

Abstract

The purpose of the present study was to identify key genes and investigate the related molecular mechanisms of bladder cancer (BC) progression. From the Gene Expression Omnibus database, the gene expression dataset GSE7476 was downloaded, which contained 43 BC samples and 12 normal bladder tissues. GSE7476 was analyzed to screen the differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for the DEGs using the DAVID database, and a protein‑protein interaction (PPI) network was then constructed using Cytoscape software. The results of the GO analysis showed that the upregulated DEGs were significantly enriched in cell division, nucleoplasm and protein binding, while the downregulated DEGs were significantly enriched in 'extracellular matrix organization', 'proteinaceous extracellular matrix' and 'heparin binding'. The results of the KEGG pathway analysis showed that the upregulated DEGs were significantly enriched in the 'cell cycle', whereas the downregulated DEGs were significantly enriched in 'complement and coagulation cascades'. JUN, cyclin‑dependent kinase 1, FOS, PCNA, TOP2A, CCND1 and CDH1 were found to be hub genes in the PPI network. Sub‑networks revealed that these gene were enriched in significant pathways, including the 'cell cycle' signaling pathway and 'PI3K‑Akt signaling pathway'. In summary, the present study identified DEGs and key target genes in the progression of BC, providing potential molecular targets and diagnostic biomarkers for the treatment of BC.

摘要

本研究旨在鉴定膀胱癌(BC)进展的关键基因并探讨相关的分子机制。从基因表达综合数据库中下载了基因表达数据集 GSE7476,其中包含 43 个 BC 样本和 12 个正常膀胱组织。对 GSE7476 进行分析,以筛选差异表达基因(DEGs)。使用 DAVID 数据库对 DEGs 进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路分析,然后使用 Cytoscape 软件构建蛋白质-蛋白质相互作用(PPI)网络。GO 分析结果表明,上调的 DEGs 在细胞分裂、核质和蛋白质结合等方面显著富集,而下调的 DEGs 在“细胞外基质组织”、“蛋白质细胞外基质”和“肝素结合”等方面显著富集。KEGG 通路分析结果表明,上调的 DEGs 在“细胞周期”中显著富集,而下调的 DEGs 在“补体和凝血级联”中显著富集。在 PPI 网络中发现 JUN、细胞周期蛋白依赖性激酶 1、FOS、PCNA、TOP2A、CCND1 和 CDH1 是枢纽基因。子网络表明这些基因富集在重要通路中,包括“细胞周期”信号通路和“PI3K-Akt 信号通路”。综上所述,本研究鉴定了 BC 进展中的 DEGs 和关键靶基因,为 BC 的治疗提供了潜在的分子靶点和诊断生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efa/5928619/98e35d607dc9/MMR-17-05-6425-g00.jpg

相似文献

1
Identification of differentially expressed genes and biological pathways in bladder cancer.
Mol Med Rep. 2018 May;17(5):6425-6434. doi: 10.3892/mmr.2018.8711. Epub 2018 Mar 9.
2
Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
Mol Med Rep. 2018 Aug;18(2):1538-1550. doi: 10.3892/mmr.2018.9095. Epub 2018 May 29.
3
Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis.
Mol Med Rep. 2019 Aug;20(2):1259-1269. doi: 10.3892/mmr.2019.10336. Epub 2019 Jun 4.
4
Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
Mol Med Rep. 2018 Nov;18(5):4185-4196. doi: 10.3892/mmr.2018.9411. Epub 2018 Aug 21.
5
Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer.
Mol Med Rep. 2018 Jun;17(6):8091-8100. doi: 10.3892/mmr.2018.8895. Epub 2018 Apr 19.
7
Identification of key candidate genes and biological pathways in bladder cancer.
PeerJ. 2018 Dec 4;6:e6036. doi: 10.7717/peerj.6036. eCollection 2018.
8
Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms.
Mol Med Rep. 2019 Nov;20(5):4415-4424. doi: 10.3892/mmr.2019.10696. Epub 2019 Sep 23.
9
Identification of hub genes and pathways in adrenocortical carcinoma by integrated bioinformatic analysis.
J Cell Mol Med. 2020 Apr;24(8):4428-4438. doi: 10.1111/jcmm.15102. Epub 2020 Mar 8.
10
Identification of key pathways and genes in the progression of cervical cancer using bioinformatics analysis.
Oncol Lett. 2018 Jul;16(1):1003-1009. doi: 10.3892/ol.2018.8768. Epub 2018 May 22.

引用本文的文献

1
Gene network screening of bladder cancer via modular analysis.
Transl Cancer Res. 2021 Feb;10(2):1043-1052. doi: 10.21037/tcr-20-2822.
2
Exploiting protein family and protein network data to identify novel drug targets for bladder cancer.
Oncotarget. 2022 Jan 12;13:105-117. doi: 10.18632/oncotarget.28175. eCollection 2022.
3
Accompaniment of Time-Lapse Parameters and Cumulus Cell RNA-Sequencing in Embryo Evaluation.
Reprod Sci. 2022 Feb;29(2):395-409. doi: 10.1007/s43032-021-00748-3. Epub 2021 Oct 12.
5
Promising diagnostic and prognostic value of six genes in human hepatocellular carcinoma.
Am J Transl Res. 2020 Apr 15;12(4):1239-1254. eCollection 2020.

本文引用的文献

1
Systemic therapy in bladder cancer.
Indian J Urol. 2017 Apr-Jun;33(2):118-126. doi: 10.4103/iju.IJU_294_16.
3
Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends.
Eur Urol. 2017 Jan;71(1):96-108. doi: 10.1016/j.eururo.2016.06.010. Epub 2016 Jun 28.
6
Generalized empirical Bayesian methods for discovery of differential data in high-throughput biology.
Bioinformatics. 2016 Jan 15;32(2):195-202. doi: 10.1093/bioinformatics/btv569. Epub 2015 Oct 1.
7
MicroRNA-490-5p is a novel tumor suppressor targeting c-FOS in human bladder cancer.
Arch Med Sci. 2015 Jun 19;11(3):561-9. doi: 10.5114/aoms.2015.52359.
8
mRNA and microRNA expression profiles of radioresistant NCI-H520 non-small cell lung cancer cells.
Mol Med Rep. 2015 Aug;12(2):1857-67. doi: 10.3892/mmr.2015.3600. Epub 2015 Apr 8.
9
Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil).
Mutat Res. 2015 Jan;771:29-35. doi: 10.1016/j.mrfmmm.2014.11.004. Epub 2014 Dec 11.
10
Global cancer statistics, 2012.
CA Cancer J Clin. 2015 Mar;65(2):87-108. doi: 10.3322/caac.21262. Epub 2015 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验