Suppr超能文献

使用 CT 进行部分实性肺癌的计算机辅助容积测量:实性成分大小预测预后。

Computer-aided Volumetry of Part-Solid Lung Cancers by Using CT: Solid Component Size Predicts Prognosis.

机构信息

From the Department of Radiology (S.K., S.I., H.U., R.I., H.S., Shinji Naganawa) and Department of Thoracic Surgery (Shota Nakamura), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

出版信息

Radiology. 2018 Jun;287(3):1030-1040. doi: 10.1148/radiol.2018172319. Epub 2018 Mar 14.

Abstract

Purpose To investigate the relationship between the postoperative prognosis of patients with part-solid non-small cell lung cancer and the solid component size acquired by using three-dimensional (3D) volumetry software on multidetector computed tomographic (CT) images. Materials and Methods A retrospective study by using preoperative multidetector CT data with 0.5-mm section thickness, clinical records, and pathologic reports of 96 patients with primary subsolid non-small cell lung cancer (47 men and 49 women; mean age ± standard deviation, 66 years ± 8) were reviewed. Two radiologists measured the two-dimensional (2D) maximal solid size of each nodule on an axial image (hereafter, 2D MSSA), the 3D maximal solid size on multiplanar reconstructed images (hereafter, 3D MSSMPR), and the 3D solid volume of greater than 0 HU (hereafter, 3D SV) within each nodule. The correlations between the postoperative recurrence and the effects of clinical and pathologic characteristics, 2D MSSA, 3D MSSMPR, and 3D SV as prognostic imaging biomarkers were assessed by using a Cox proportional hazards model. Results For the prediction of postoperative recurrence, the area under the receiver operating characteristics curve was 0.796 (95% confidence interval: 0.692, 0.900) for 2D MSSA, 0.776 (95% confidence interval: 0.667, 0.886) for 3D MSSMPR, and 0.835 (95% confidence interval: 0.749, 0.922) for 3D SV. The optimal cutoff value for 3D SV for predicting tumor recurrence was 0.54 cm, with a sensitivity of 0.933 (95% confidence interval: 0.679, 0.998) and a specificity of 0.716 (95% confidence interval: 0.605, 0.811) for the recurrence. Significant predictive factors for disease-free survival were 3D SV greater than or equal to 0.54 cm (hazard ratio, 6.61; P = .001) and lymphatic and/or vascular invasion derived from histopathologic analysis (hazard ratio, 2.96; P = .040). Conclusion The measurement of 3D SV predicted the postoperative prognosis of patients with part-solid lung cancer more accurately than did 2D MSSA and 3D MSSMPR. RSNA, 2018.

摘要

目的

利用多排螺旋 CT 图像三维(3D)容积测量软件,探讨部分实性非小细胞肺癌患者术后预后与实性成分大小的关系。

材料与方法

本研究回顾性分析了 96 例经手术治疗的原发性部分实性非小细胞肺癌患者的术前多排螺旋 CT 数据、临床记录和病理报告。这些患者包括 47 名男性和 49 名女性,平均年龄为 66 岁±8 岁。两位放射科医生分别在轴位图像上测量每个结节的二维(2D)最大实性直径(2D MSSA)、多平面重建图像上的 3D 最大实性直径(3D MSSMPR)和每个结节内大于 0 HU 的 3D 实性体积(3D SV)。采用 Cox 比例风险模型评估术后复发与临床病理特征、2D MSSA、3D MSSMPR 和 3D SV 等预后影像学标志物的相关性。

结果

对于预测术后复发,2D MSSA 的受试者工作特征曲线下面积为 0.796(95%置信区间:0.692,0.900),3D MSSMPR 的面积为 0.776(95%置信区间:0.667,0.886),3D SV 的面积为 0.835(95%置信区间:0.749,0.922)。预测肿瘤复发的 3D SV 最佳截断值为 0.54 cm,其对复发的敏感性为 0.933(95%置信区间:0.679,0.998),特异性为 0.716(95%置信区间:0.605,0.811)。无病生存的显著预测因素为 3D SV 大于或等于 0.54 cm(风险比,6.61;P =.001)和来源于组织病理学分析的淋巴管和/或血管侵犯(风险比,2.96;P =.040)。

结论

与 2D MSSA 和 3D MSSMPR 相比,3D SV 测量值能更准确地预测部分实性肺癌患者的术后预后。RSNA,2018 年。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验