Suppr超能文献

基于 CT 直方图分析的非小细胞肺癌定量分类:与组织病理学特征和无复发生存的相关性。

Quantitative classification based on CT histogram analysis of non-small cell lung cancer: correlation with histopathological characteristics and recurrence-free survival.

机构信息

Institute of Technology and Science, The University of Tokushima, Tokushima, Japan.

出版信息

Med Phys. 2012 Feb;39(2):988-1000. doi: 10.1118/1.3679017.

Abstract

PURPOSE

Quantification of the CT appearance of non-small cell lung cancer (NSCLC) is of interest in a number of clinical and investigational applications. The purpose of this work is to present a quantitative five-category (α, β, γ, δ, and ɛ) classification method based on CT histogram analysis of NSCLC and to determine the prognostic value of this quantitative classification.

METHODS

Institutional review board approval and informed consent were obtained at the National Cancer Center Hospital. A total of 454 patients with NSCLC (maximum lesion size of 3 cm) were enrolled. Each lesion was measured using multidetector CT at the same tube voltage, reconstruction interval, beam collimation, and reconstructed slice thickness. Two observers segmented NSCLC nodules from the CT images by using a semi-automated three-dimensional technique. The two observers classified NSCLCs into one of five categories from the visual assessment of CT histograms obtained from each nodule segmentation result. Interobserver variability in the classification was computed with Cohen's κ statistic. Any disagreements were resolved by consensus between the two observers to define the gold standard of the classification. Using a classification and regression tree (CART), the authors obtained a decision tree for a quantitative five-category classification. To assess the impact of the nodule segmentation on the classification, the variability in classifications obtained by two decision trees for the nodule segmentation results was also calculated with the Cohen's κ statistic. The authors calculated the association of recurrence with prognostic factors including classification, sex, age, tumor diameter, smoking status, disease stage, histological type, lymphatic permeation, and vascular invasion using both univariate and multivariate Cox regression analyses.

RESULTS

The κ values for interobserver agreement of the classification using two nodule segmentation results were 0.921 (P < 0.001) and 0.903 (P < 0.001), respectively. The κ values for the variability in the classification task using two decision trees were 0.981 (P < 0.001) and 0.981 (P < 0.001), respectively. All the NSCLCs were classified into one of five categories (type α, n = 8; type β, n = 38; type γ, n = 103; type δ, n = 112; type ɛ, n = 193) by using a decision tree. Using a multivariate Cox regression analysis, the classification (hazard ratio 5.64; P = 0.008) and disease stage (hazard ratio 8.33; P < 0.001) were identified as being associated with an increased recurrence risk.

CONCLUSIONS

The quantitative five-category classifier presented here has the potential to provide an objective classification of NSCLC nodules that is strongly correlated with prognostic factors.

摘要

目的

定量分析非小细胞肺癌(NSCLC)的 CT 表现,在许多临床和研究应用中具有重要意义。本研究旨在提出一种基于 NSCLC 体素直方图分析的定量五分类(α、β、γ、δ 和 ɛ)分类方法,并确定该定量分类的预后价值。

方法

本研究获得了国家癌症中心医院的机构审查委员会批准和知情同意。共纳入 454 例最大直径为 3 cm 的 NSCLC 患者。使用多排螺旋 CT 机,在相同的管电压、重建间隔、射束准直和重建层厚下对每位患者进行测量。两名观察者使用半自动三维技术从 CT 图像中对 NSCLC 结节进行分割。两名观察者根据从每个结节分割结果获得的 CT 直方图的视觉评估,将 NSCLC 分为五类之一。采用 Cohen's κ 统计量计算观察者间分类的变异性。通过两名观察者之间的共识解决任何分歧,以确定分类的金标准。通过分类回归树(CART),作者获得了一个用于定量五分类的决策树。为了评估结节分割对分类的影响,还计算了两个基于结节分割结果的决策树获得的分类变异性的 Cohen's κ 值。作者使用单变量和多变量 Cox 回归分析,计算了与复发相关的预后因素,包括分类、性别、年龄、肿瘤直径、吸烟状态、疾病分期、组织学类型、淋巴渗透和血管侵犯。

结果

两名观察者使用两种结节分割结果的分类的 κ 值分别为 0.921(P<0.001)和 0.903(P<0.001)。使用两个决策树进行分类任务的 κ 值分别为 0.981(P<0.001)和 0.981(P<0.001)。通过决策树,所有 NSCLC 均分为五类(α 型,n=8;β 型,n=38;γ 型,n=103;δ 型,n=112;ɛ 型,n=193)。多变量 Cox 回归分析表明,分类(风险比 5.64;P=0.008)和疾病分期(风险比 8.33;P<0.001)与复发风险增加相关。

结论

本文提出的定量五分类器具有为 NSCLC 结节提供与预后因素密切相关的客观分类的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验