Suppr超能文献

利用人工智能和联合疗法开发抗癌肽用于癌症治疗

Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics.

作者信息

Hwang Ji Su, Kim Seok Gi, Shin Tae Hwan, Jang Yong Eun, Kwon Do Hyeon, Lee Gwang

机构信息

Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Korea.

Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea.

出版信息

Pharmaceutics. 2022 May 6;14(5):997. doi: 10.3390/pharmaceutics14050997.

Abstract

Cancer is a group of diseases causing abnormal cell growth, altering the genome, and invading or spreading to other parts of the body. Among therapeutic peptide drugs, anticancer peptides (ACPs) have been considered to target and kill cancer cells because cancer cells have unique characteristics such as a high negative charge and abundance of microvilli in the cell membrane when compared to a normal cell. ACPs have several advantages, such as high specificity, cost-effectiveness, low immunogenicity, minimal toxicity, and high tolerance under normal physiological conditions. However, the development and identification of ACPs are time-consuming and expensive in traditional wet-lab-based approaches. Thus, the application of artificial intelligence on the approaches can save time and reduce the cost to identify candidate ACPs. Recently, machine learning (ML), deep learning (DL), and hybrid learning (ML combined DL) have emerged into the development of ACPs without experimental analysis, owing to advances in computer power and big data from the power system. Additionally, we suggest that combination therapy with classical approaches and ACPs might be one of the impactful approaches to increase the efficiency of cancer therapy.

摘要

癌症是一组导致细胞异常生长、改变基因组并侵入或扩散至身体其他部位的疾病。在治疗性肽类药物中,抗癌肽(ACPs)被认为可靶向并杀死癌细胞,因为与正常细胞相比,癌细胞具有一些独特特征,如细胞膜上带有高负电荷且富含微绒毛。抗癌肽具有多种优势,如高特异性、成本效益高、免疫原性低、毒性极小以及在正常生理条件下耐受性高。然而,在传统的基于湿实验室的方法中,抗癌肽的开发和鉴定既耗时又昂贵。因此,将人工智能应用于这些方法可以节省时间并降低鉴定候选抗癌肽的成本。最近,由于计算机能力的提升以及电力系统产生的大数据,机器学习(ML)、深度学习(DL)和混合学习(ML与DL相结合)已在无需实验分析的情况下用于抗癌肽的开发。此外,我们认为经典方法与抗癌肽的联合治疗可能是提高癌症治疗效率的有效方法之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f285/9147327/ef6a349e7505/pharmaceutics-14-00997-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验