Suppr超能文献

用于比较代谢工程中高通量、低迭代优化策略的模拟建模

Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering.

作者信息

Heinsch Stephen C, Das Siba R, Smanski Michael J

机构信息

BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, United States.

Bioinformatics and Computational Biology Program, University of Minnesota, Twin-Cities, Saint Paul, MN, United States.

出版信息

Front Microbiol. 2018 Feb 27;9:313. doi: 10.3389/fmicb.2018.00313. eCollection 2018.

Abstract

Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems.

摘要

提高多基因代谢途径的最终滴度可被视为一个多变量优化问题。虽然存在众多多变量优化算法,但专门设计用于适应基因工程工作流程所带来的限制的却很少。我们提出了一种优化任意数量基因表达水平的策略,该策略所需的设计 - 构建 - 测试迭代次数很少。我们在一系列模拟表达景观上比较了几种优化算法的性能。我们表明,最佳实验设计参数取决于景观崎岖程度。这项工作为多基因系统的数值优化设计和执行提供了一个理论框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dca7/5835107/44dbcb04f71c/fmicb-09-00313-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验