Suppr超能文献

螺旋惯性微流控技术的阴性选择可提高血液中病毒的回收率和测序质量。

Negative Selection by Spiral Inertial Microfluidics Improves Viral Recovery and Sequencing from Blood.

机构信息

Broad Institute of MIT and Harvard , 75 Ames Street , Cambridge , Massachusetts 02142 , United States.

Center for Systems Biology, Department of Organismic and Evolutionary Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.

出版信息

Anal Chem. 2018 Apr 3;90(7):4657-4662. doi: 10.1021/acs.analchem.7b05200. Epub 2018 Mar 21.

Abstract

In blood samples from patients with viral infection, it is often important to separate viral particles from human cells, for example, to minimize background in performing viral whole genome sequencing. Here, we present a microfluidic device that uses spiral inertial microfluidics with continuous circulation to separate host cells from viral particles and free nucleic acid. We demonstrate that this device effectively reduces white blood cells, red blood cells, and platelets from both whole blood and plasma samples with excellent recovery of viral nucleic acid. Furthermore, microfluidic separation leads to greater viral genome coverage and depth, highlighting an important application of this device in processing clinical samples for viral genome sequencing.

摘要

在病毒感染患者的血液样本中,通常需要将病毒颗粒与人细胞分离,例如,尽量减少病毒全基因组测序中的背景干扰。在此,我们展示了一种使用螺旋惯性微流控技术并实现连续循环的微流控装置,用于分离宿主细胞和病毒颗粒及游离核酸。我们证明该装置可有效地从全血和血浆样本中去除白细胞、红细胞和血小板,同时病毒核酸的回收率良好。此外,微流控分离可提高病毒基因组的覆盖度和深度,突出了该装置在处理临床样本进行病毒基因组测序方面的重要应用。

相似文献

6
A Method for Isolation of the Virome from Plasma Samples.
Methods Mol Biol. 2018;1838:165-171. doi: 10.1007/978-1-4939-8682-8_12.
8
High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.利用惯性微流控技术从全血中高通量分离白细胞。
IEEE Trans Biomed Circuits Syst. 2017 Dec;11(6):1422-1430. doi: 10.1109/TBCAS.2017.2735440. Epub 2017 Aug 29.

引用本文的文献

2
A review on inertial microfluidic fabrication methods.惯性微流体制备方法综述
Biomicrofluidics. 2023 Oct 19;17(5):051504. doi: 10.1063/5.0163970. eCollection 2023 Sep.
3
Blood component separation in straight microfluidic channels.直微流控通道中的血液成分分离
Biomicrofluidics. 2023 Oct 16;17(5):054106. doi: 10.1063/5.0176457. eCollection 2023 Sep.
5
Inertial Microfluidics Enabling Clinical Research.助力临床研究的惯性微流控技术
Micromachines (Basel). 2021 Mar 3;12(3):257. doi: 10.3390/mi12030257.
6
Recent advances in lab-on-a-chip technologies for viral diagnosis.微流控芯片技术在病毒诊断中的最新进展。
Biosens Bioelectron. 2020 Apr 1;153:112041. doi: 10.1016/j.bios.2020.112041. Epub 2020 Jan 22.

本文引用的文献

1
Zika virus evolution and spread in the Americas.寨卡病毒在美洲的演变与传播。
Nature. 2017 Jun 15;546(7658):411-415. doi: 10.1038/nature22402. Epub 2017 May 24.
10
Large-Volume Microfluidic Cell Sorting for Biomedical Applications.用于生物医学应用的大容量微流控细胞分选。
Annu Rev Biomed Eng. 2015;17:1-34. doi: 10.1146/annurev-bioeng-071114-040818. Epub 2015 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验