文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Mechanical, Electrical and Magnetic Properties of Ferrogels with Embedded Iron Oxide Nanoparticles Obtained by Laser Target Evaporation: Focus on Multifunctional Biosensor Applications.

作者信息

Blyakhman Felix A, Buznikov Nikita A, Sklyar Tatyana F, Safronov Alexander P, Golubeva Elizaveta V, Svalov Andrey V, Sokolov Sergey Yu, Melnikov Grigory Yu, Orue Iñaki, Kurlyandskaya Galina V

机构信息

Ural State Medical University, Yekaterinburg 620028, Russia.

Institute of Natural Sciences and Mathematics Ural Federal University, Yekaterinburg 620002, Russia.

出版信息

Sensors (Basel). 2018 Mar 15;18(3):872. doi: 10.3390/s18030872.


DOI:10.3390/s18030872
PMID:29543746
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5877372/
Abstract

Hydrogels are biomimetic materials widely used in the area of biomedical engineering and biosensing. Ferrogels (FG) are magnetic composites capable of functioning as magnetic field sensitive transformers and field assisted drug deliverers. FG can be prepared by incorporating magnetic nanoparticles (MNPs) into chemically crosslinked hydrogels. The properties of biomimetic ferrogels for multifunctional biosensor applications can be set up by synthesis. The properties of these biomimetic ferrogels can be thoroughly controlled in a physical experiment environment which is much less demanding than biotests. Two series of ferrogels (soft and dense) based on polyacrylamide (PAAm) with different chemical network densities were synthesized by free-radical polymerization in aqueous solution with ,'-methylene-diacrylamide as a cross-linker and maghemite Fe₂O₃ MNPs fabricated by laser target evaporation as a filler. Their mechanical, electrical and magnetic properties were comparatively analyzed. We developed a giant magnetoimpedance (MI) sensor prototype with multilayered FeNi-based sensitive elements deposited onto glass or polymer substrates adapted for FG studies. The MI measurements in the initial state and in the presence of FG with different concentrations of MNPs at a frequency range of 1-300 MHz allowed a precise characterization of the stray fields of the MNPs present in the FG. We proposed an electrodynamic model to describe the MI in multilayered film with a FG layer based on the solution of linearized Maxwell equations for the electromagnetic fields coupled with the Landau-Lifshitz equation for the magnetization dynamics.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/e361e8d692bf/sensors-18-00872-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/5b54c1da107e/sensors-18-00872-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/47ed1d933d47/sensors-18-00872-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/a79741bad3c2/sensors-18-00872-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/65ed12704ba4/sensors-18-00872-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/2967281b4421/sensors-18-00872-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/2143cd739ddb/sensors-18-00872-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/2eb33ce6b701/sensors-18-00872-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/17a1f7233744/sensors-18-00872-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/51895e84af24/sensors-18-00872-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/7673b555e113/sensors-18-00872-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/e4f0ac0403a8/sensors-18-00872-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/2fb8bc27ec2b/sensors-18-00872-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/e361e8d692bf/sensors-18-00872-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/5b54c1da107e/sensors-18-00872-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/47ed1d933d47/sensors-18-00872-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/a79741bad3c2/sensors-18-00872-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/65ed12704ba4/sensors-18-00872-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/2967281b4421/sensors-18-00872-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/2143cd739ddb/sensors-18-00872-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/2eb33ce6b701/sensors-18-00872-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/17a1f7233744/sensors-18-00872-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/51895e84af24/sensors-18-00872-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/7673b555e113/sensors-18-00872-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/e4f0ac0403a8/sensors-18-00872-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/2fb8bc27ec2b/sensors-18-00872-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144f/5877372/e361e8d692bf/sensors-18-00872-g013.jpg

相似文献

[1]
Mechanical, Electrical and Magnetic Properties of Ferrogels with Embedded Iron Oxide Nanoparticles Obtained by Laser Target Evaporation: Focus on Multifunctional Biosensor Applications.

Sensors (Basel). 2018-3-15

[2]
Polyacrylamide Ferrogels with Magnetite or Strontium Hexaferrite: Next Step in the Development of Soft Biomimetic Matter for Biosensor Applications.

Sensors (Basel). 2018-1-16

[3]
Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection.

Biosens Bioelectron. 2018-6-20

[4]
The Contribution of Magnetic Nanoparticles to Ferrogel Biophysical Properties.

Nanomaterials (Basel). 2019-2-8

[5]
Ferrogels Ultrasonography for Biomedical Applications.

Sensors (Basel). 2019-9-13

[6]
A Model for the Magnetoimpedance Effect in Non-Symmetric Nanostructured Multilayered Films with Ferrogel Coverings.

Sensors (Basel). 2021-7-29

[7]
Ferrogels based on entrapped metallic iron nanoparticles in a polyacrylamide network: extended Derjaguin-Landau-Verwey-Overbeek consideration, interfacial interactions and magnetodeformation.

Soft Matter. 2017-4-20

[8]
Tuning mass transport in magnetic nanoparticle-filled viscoelastic hydrogels using low-frequency rotating magnetic fields.

Soft Matter. 2017-9-20

[9]
Magnetoimpedance Thin Film Sensor for Detecting of Stray Fields of Magnetic Particles in Blood Vessel.

Sensors (Basel). 2021-5-22

[10]
Magnetoimpedance in Symmetric and Non-Symmetric Nanostructured Multilayers: A Theoretical Study.

Sensors (Basel). 2019-4-12

引用本文的文献

[1]
Analysis of Relationship between Microwave Magnetic Properties and Magnetic Structure of Permalloy Films.

Sensors (Basel). 2024-9-24

[2]
Theoretical estimation of the thermal damages of living tissues caused by laser irradiation in tumor thermal therapy.

Heliyon. 2024-4-3

[3]
Investigation of the Effect of Debris Position on the Detection Stability of a Magnetic Plug Sensor Based on Alternating Current Bridge.

Sensors (Basel). 2023-12-21

[4]
Remote Positioning of Spherical Alginate Ferrogels in a Fluid Flow by a Magnetic Field: Experimental and Computer Simulation.

Gels. 2023-9-1

[5]
Mechanical and Recyclable Properties of Polyimine Enhanced by Biomimetic Modification of Graphene Oxide Sheets/Silicon Carbide Nano-Whiskers.

Nanomaterials (Basel). 2022-12-18

[6]
Synthesised Conductive/Magnetic Composite Particles for Magnetic Ablations of Tumours.

Micromachines (Basel). 2022-9-27

[7]
Role of Ce concentration on the structural and magnetic properties of functional magnetic oxide particles.

Nanoscale Adv. 2021-8-25

[8]
Mechanical Force Acting on Ferrogel in a Non-Uniform Magnetic Field: Measurements and Modeling.

Micromachines (Basel). 2022-7-23

[9]
Heat Transfer in Biological Spherical Tissues during Hyperthermia of Magnetoma.

Biology (Basel). 2021-12-2

[10]
A Model for the Magnetoimpedance Effect in Non-Symmetric Nanostructured Multilayered Films with Ferrogel Coverings.

Sensors (Basel). 2021-7-29

本文引用的文献

[1]
Improved magnetic regulation of delivery profiles from ferrogels.

Biomaterials. 2018-2-3

[2]
Polyacrylamide Ferrogels with Magnetite or Strontium Hexaferrite: Next Step in the Development of Soft Biomimetic Matter for Biosensor Applications.

Sensors (Basel). 2018-1-16

[3]
Nanostructured materials for magnetic biosensing.

Biochim Biophys Acta Gen Subj. 2017-6

[4]
High performance magnetoimpedance in FeNi/Ti nanostructured multilayers with opened magnetic flux.

J Nanosci Nanotechnol. 2012-9

[5]
Effect of cytoskeletal elastic properties on the mechanoelectrical transduction in excitable cells.

J Biomech. 2012-3-6

[6]
Magnetic permeability measurements in bioanalysis and biosensors.

Anal Chem. 1996-6-1

[7]
[The relationship between the mechanical and electrical properties of a synthetic hydrogel chosen as an experimental model of cytoskeleton].

Biofizika. 2008

[8]
Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug.

Langmuir. 2006-7-4

[9]
Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing.

Biosens Bioelectron. 2001-6

[10]
Tech.Sight. Biochemistry. Biosensors--sense and sensitivity.

Science. 2000-11-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索