Suppr超能文献

基于学习的有意义喉镜帧分类。

Learning-based classification of informative laryngoscopic frames.

机构信息

Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy.

Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy.

出版信息

Comput Methods Programs Biomed. 2018 May;158:21-30. doi: 10.1016/j.cmpb.2018.01.030. Epub 2018 Jan 31.

Abstract

BACKGROUND AND OBJECTIVE

Early-stage diagnosis of laryngeal cancer is of primary importance to reduce patient morbidity. Narrow-band imaging (NBI) endoscopy is commonly used for screening purposes, reducing the risks linked to a biopsy but at the cost of some drawbacks, such as large amount of data to review to make the diagnosis. The purpose of this paper is to present a strategy to perform automatic selection of informative endoscopic video frames, which can reduce the amount of data to process and potentially increase diagnosis performance.

METHODS

A new method to classify NBI endoscopic frames based on intensity, keypoint and image spatial content features is proposed. Support vector machines with the radial basis function and the one-versus-one scheme are used to classify frames as informative, blurred, with saliva or specular reflections, or underexposed.

RESULTS

When tested on a balanced set of 720 images from 18 different laryngoscopic videos, a classification recall of 91% was achieved for informative frames, significantly overcoming three state of the art methods (Wilcoxon rank-signed test, significance level = 0.05).

CONCLUSIONS

Due to the high performance in identifying informative frames, the approach is a valuable tool to perform informative frame selection, which can be potentially applied in different fields, such us computer-assisted diagnosis and endoscopic view expansion.

摘要

背景与目的

早期诊断喉癌对于降低患者发病率至关重要。窄带成像(NBI)内镜检查常用于筛查目的,降低了活检相关的风险,但也存在一些缺点,例如需要大量数据来进行诊断。本文旨在提出一种自动选择有意义的内镜视频帧的策略,以减少处理的数据量并提高诊断性能。

方法

提出了一种基于强度、关键点和图像空间内容特征对 NBI 内镜帧进行分类的新方法。支持向量机采用径向基函数和一对一方案进行分类,将帧分为有意义、模糊、有唾液或镜面反射、或曝光不足。

结果

在 18 个不同喉镜视频的 720 张平衡图像上进行测试,有意义帧的分类召回率达到 91%,显著优于三种最先进的方法(Wilcoxon 秩和检验,显著性水平=0.05)。

结论

由于在识别有意义帧方面表现出色,该方法是进行有意义帧选择的有效工具,可应用于计算机辅助诊断和内镜视图扩展等不同领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验