Suppr超能文献

镰状细胞病中的侧支血管形成受损。

Impaired Collateral Vessel Formation in Sickle Cell Disease.

机构信息

From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (D.-O.D., L.H., G.J., A.N.L., D.W., W.R.T.).

Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta, Emory University School of Medicine, GA (D.R.A.).

出版信息

Arterioscler Thromb Vasc Biol. 2018 May;38(5):1125-1133. doi: 10.1161/ATVBAHA.118.310771. Epub 2018 Mar 15.

Abstract

OBJECTIVE

The adaptive response to vascular injury is the formation of functional collateral vessels to maintain organ integrity. Many of the clinical complications associated with sickle cell disease can be attributed to repeated bouts of vascular insufficiency, yet the detailed mechanisms of collateral vessel formation after injury are largely unknown in sickle cell disease. Here, we characterize postischemic neovascularization in sickle cell disease and the role of neutrophils in the production of reactive oxygen species.

APPROACH AND RESULTS

We induced hindlimb ischemia by ligation of the femoral artery in Townes SS (sickle cell) mice compared with AA (wild type) mice. Perfusion recovery, ascertained using LASER (light amplification by stimulated emission of radiation) Doppler perfusion imaging, showed significant diminution in collateral vessel formation in SS mice after hindlimb ischemia (76±13% AA versus 34±10% in SS by day 28; <0.001; n=10 per group). The incidence of amputation (25% versus 5%) and foot necrosis (80% versus 15%) after hindlimb ischemia was significantly increased in the SS mice. Motor function recovery evaluation by the running wheel assay was also impaired in SS mice (36% versus 97% at 28 days post-hindlimb ischemia; <0.001). This phenotype was associated with persistent and excessive production of reactive oxygen species by neutrophils. Importantly, neutrophil depletion or treatment with the antioxidant N-acetylcysteine reduced oxidative stress and improved functional collateral formation in the SS mice.

CONCLUSIONS

Our data suggest dysfunctional collateral vessel formation in SS mice after vascular injury and provide a mechanistic basis for the multiple vascular complications of sickle cell disease.

摘要

目的

血管损伤的适应性反应是形成功能性侧支血管以维持器官完整性。镰状细胞病相关的许多临床并发症可归因于反复发生的血管功能不全,但在镰状细胞病中,损伤后侧支血管形成的详细机制在很大程度上尚不清楚。在这里,我们描述了镰状细胞病中的缺血后新生血管形成和中性粒细胞在产生活性氧中的作用。

方法和结果

我们通过结扎股动脉在 Townes SS(镰状细胞)小鼠中诱导后肢缺血,并与 AA(野生型)小鼠进行比较。使用 LASER(受激辐射光放大)多普勒灌注成像来确定灌注恢复,结果显示 SS 小鼠在缺血后侧支血管形成明显减少(28 天时 AA 组为 76±13%,SS 组为 34±10%;<0.001;每组 n=10)。SS 小鼠的后肢缺血后截肢(25%对 5%)和足部坏死(80%对 15%)发生率显著增加。通过跑步轮试验评估运动功能恢复也在 SS 小鼠中受损(缺血后 28 天 36%对 97%;<0.001)。这种表型与中性粒细胞持续和过度产生活性氧有关。重要的是,中性粒细胞耗竭或用抗氧化剂 N-乙酰半胱氨酸治疗可减少 SS 小鼠的氧化应激并改善功能性侧支形成。

结论

我们的数据表明 SS 小鼠在血管损伤后侧支血管形成功能障碍,并为镰状细胞病的多种血管并发症提供了机制基础。

相似文献

1
Impaired Collateral Vessel Formation in Sickle Cell Disease.
Arterioscler Thromb Vasc Biol. 2018 May;38(5):1125-1133. doi: 10.1161/ATVBAHA.118.310771. Epub 2018 Mar 15.
2
Reactive oxygen species regulate osteopontin expression in a murine model of postischemic neovascularization.
Arterioscler Thromb Vasc Biol. 2012 Jun;32(6):1383-91. doi: 10.1161/ATVBAHA.112.248922. Epub 2012 Apr 5.
3
Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice.
Lab Invest. 2022 Aug;102(8):805-813. doi: 10.1038/s41374-022-00780-0. Epub 2022 Mar 30.
4
P2Y2 nucleotide receptor mediates arteriogenesis in a murine model of hind limb ischemia.
J Vasc Surg. 2016 Jan;63(1):216-25. doi: 10.1016/j.jvs.2014.06.112. Epub 2014 Jul 31.
5
Polymerase δ-interacting protein 2 promotes postischemic neovascularization of the mouse hindlimb.
Arterioscler Thromb Vasc Biol. 2014 Jul;34(7):1548-55. doi: 10.1161/ATVBAHA.114.303873. Epub 2014 May 22.
6
p27(kip1) Knockout enhances collateralization in response to hindlimb ischemia.
J Vasc Surg. 2016 May;63(5):1351-9. doi: 10.1016/j.jvs.2014.12.047. Epub 2015 Feb 18.
7
Overexpression of catalase in myeloid cells causes impaired postischemic neovascularization.
Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2203-9. doi: 10.1161/ATVBAHA.111.233247. Epub 2011 Jul 28.
9
Ablation of the transcription factor Nrf2 promotes ischemia-induced neovascularization by enhancing the inflammatory response.
Arterioscler Thromb Vasc Biol. 2010 Aug;30(8):1553-61. doi: 10.1161/ATVBAHA.110.204123. Epub 2010 May 6.
10
Tumor suppressor protein p53 negatively regulates ischemia-induced angiogenesis and arteriogenesis.
J Vasc Surg. 2018 Dec;68(6S):222S-233S.e1. doi: 10.1016/j.jvs.2018.02.055. Epub 2018 Aug 17.

引用本文的文献

1
Characterizing pregnancy outcomes in a humanized mouse model of sickle cell disease.
Br J Haematol. 2025 Sep;207(3):813-823. doi: 10.1111/bjh.70024. Epub 2025 Jul 20.
2
Impaired post-stroke collateral circulation in sickle cell anemia mice.
Front Neurol. 2023 Sep 26;14:1215876. doi: 10.3389/fneur.2023.1215876. eCollection 2023.
5
Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice.
Lab Invest. 2022 Aug;102(8):805-813. doi: 10.1038/s41374-022-00780-0. Epub 2022 Mar 30.
6
RASAL3 Is a Putative RasGAP Modulating Inflammatory Response by Neutrophils.
Front Immunol. 2021 Oct 27;12:744300. doi: 10.3389/fimmu.2021.744300. eCollection 2021.
7
Annual Report on Sex in Preclinical Studies: Publications in 2018.
Arterioscler Thromb Vasc Biol. 2020 Jan;40(1):e1-e9. doi: 10.1161/ATVBAHA.119.313556. Epub 2019 Dec 23.
8
Investigating the potential of the secretome of mesenchymal stem cells derived from sickle cell disease patients.
PLoS One. 2019 Oct 30;14(10):e0222093. doi: 10.1371/journal.pone.0222093. eCollection 2019.
9
Red blood cells modulate structure and dynamics of venous clot formation in sickle cell disease.
Blood. 2019 Jun 6;133(23):2529-2541. doi: 10.1182/blood.2019000424. Epub 2019 Apr 5.

本文引用的文献

2
Higher prevalence of spontaneous cerebral vasculopathy and cerebral infarcts in a mouse model of sickle cell disease.
J Cereb Blood Flow Metab. 2019 Feb;39(2):342-351. doi: 10.1177/0271678X17732275. Epub 2017 Sep 19.
3
Neutrophils as protagonists and targets in chronic inflammation.
Nat Rev Immunol. 2017 Apr;17(4):248-261. doi: 10.1038/nri.2017.10. Epub 2017 Mar 13.
4
Intravascular hemolysis and the pathophysiology of sickle cell disease.
J Clin Invest. 2017 Mar 1;127(3):750-760. doi: 10.1172/JCI89741.
5
Large-Vessel Vasculopathy in Children With Sickle Cell Disease: A Magnetic Resonance Imaging Study of Infarct Topography and Focal Atrophy.
Pediatr Neurol. 2017 Apr;69:49-57. doi: 10.1016/j.pediatrneurol.2016.11.005. Epub 2016 Dec 7.
6
Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5182-91. doi: 10.1073/pnas.1600311113. Epub 2016 Aug 8.
7
Cardiovascular complications and risk of death in sickle-cell disease.
Lancet. 2016 Jun 18;387(10037):2565-74. doi: 10.1016/S0140-6736(16)00647-4.
8
9
Neutrophil ageing is regulated by the microbiome.
Nature. 2015 Sep 24;525(7570):528-32. doi: 10.1038/nature15367. Epub 2015 Sep 16.
10
Delayed posterior circulation insufficiency in pediatric moyamoya disease.
J Neurol. 2014 Dec;261(12):2305-13. doi: 10.1007/s00415-014-7484-7. Epub 2014 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验