Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China; Department of Radiation Oncology, Rui Kang Hospital, Guangxi Traditional Chinese Medical University, Nanning, China.
Department of Radiation Oncology, University Hospital Freiburg, Germany.
Radiother Oncol. 2018 Oct;129(1):136-142. doi: 10.1016/j.radonc.2018.02.031. Epub 2018 Mar 13.
To build and validate multivariate normal tissue complication probability (NTCP) models for radiation-induced hepatic toxicity (RIHT) after stereotactic body radiation therapy (SBRT).
Eighty-five patients with hepatocellular carcinoma (HCC) in a phase II clinical trial were enroled. A progression of at least 1 or 2 points in the Child-Pugh (CP) score post-SBRT was classified as RIHT (≥1 or ≥2). NTCP models for RIHT (≥1 or ≥2) were developed using logistic regression. Nomograms for each model were formulated. The cut-off point of each independent dosimetric risk factor was obtained using receiver-operating characteristic (ROC) analysis. We used an independent cohort (101 patients) for model validation.
Twenty (23.5%) and 12 (14.2%) patients experienced RIHT (≥1) and RIHT (≥2), respectively. V, VS, and pretreatment CP (pre-CP) were the optimal predictors for RIHT (≥1 and ≥2) modelling. V ≤33.1% and VS ≥416.2 mL for RIHT (≥1), and V ≤21.5% and VS ≥621.8 mL for RIHT (≥2), were the cut-off points. Four NTCP models and their nomograms were generated. These models and nomograms showed good prediction performance (area under the curve (AUC), 0.83-0.89). Our NTCP model (RIHT ≥2) based on V plus pre-CP performed well (AUC = 0.78) in a validation cohort.
V, VS, and pre-CP are crucial predictors for RIHT (≥1 and ≥2). Our NTCP models and nomograms were conducive to obtain individual constraints for patients with HCC.
ChiCTR-IIC-16008233.
建立并验证立体定向体部放射治疗(SBRT)后放射性肝毒性(RIHT)的多变量正常组织并发症概率(NTCP)模型。
本研究纳入了一项 II 期临床试验中的 85 例肝细胞癌(HCC)患者。SBRT 后 Child-Pugh(CP)评分至少增加 1 或 2 分被归类为 RIHT(≥1 或≥2)。使用逻辑回归建立 RIHT(≥1 或≥2)的 NTCP 模型。为每个模型制定了列线图。使用受试者工作特征(ROC)分析获得每个独立剂量学风险因素的截断值。我们使用独立队列(101 例患者)进行模型验证。
20 例(23.5%)和 12 例(14.2%)患者分别发生 RIHT(≥1)和 RIHT(≥2)。V、VS 和治疗前 CP(pre-CP)是 RIHT(≥1 和≥2)建模的最佳预测因子。对于 RIHT(≥1),V≤33.1%和 VS≥416.2mL 是截断值;对于 RIHT(≥2),V≤21.5%和 VS≥621.8mL 是截断值。生成了 4 个 NTCP 模型及其列线图。这些模型和列线图具有良好的预测性能(曲线下面积(AUC),0.83-0.89)。在验证队列中,我们的基于 V 和 pre-CP 的 NTCP 模型(RIHT≥2)表现良好(AUC=0.78)。
V、VS 和 pre-CP 是 RIHT(≥1 和≥2)的关键预测因子。我们的 NTCP 模型和列线图有助于为 HCC 患者获得个体化限制。
ChiCTR-IIC-16008233。