Complexity & Computational Population Health Group, Department of Kinesiology and Health Science, Stephen F. Austin State University, P.O. Box 13015, Nacogdoches, TX, 75962, USA.
Complexity & Computational Population Health Group, Department of Health & Kinesiology, Texas A&M University, 4243 TAMU, College Station, TX, 77843-4243, USA.
Accid Anal Prev. 2018 Jun;115:62-72. doi: 10.1016/j.aap.2018.03.012. Epub 2018 Mar 15.
Long-haul truck drivers experience poor sleep health and heightened accident rates, and undiagnosed sleep disorders contribute to these negative outcomes. Subjective sleep disorder screening tools may aid in detecting drivers' sleep disorders. This study sought to evaluate the value of subjective screening methods for detecting latent sleep disorders and identifying truck drivers at-risk for poor sleep health and safety-relevant performance.
Using cross-sectional data from 260 long-haul truck drivers, we: 1) used factor analysis to identify possible latent sleep disorders; 2) explored the construct validity of extracted sleep disorder factors by determining their associations with established sleep disorder risk factors and symptoms; and 3) explored the predictive validity of resulting sleep disorder factors by determining their associations with sleep health and safety-relevant performance.
Five latent sleep disorder factors were extracted: 1) circadian rhythm sleep disorders; 2) sleep-related breathing disorders; 3) parasomnias; 4) insomnias; 5) and sleep-related movement disorders. Patterns of associations between these factors generally corresponded with known risk factors and symptoms. One or more of the extracted latent sleep disorder factors were significantly associated with all the sleep health and safety outcomes.
Using subjective sleep problems to detect latent sleep disorders among long-haul truck drivers may be a timely and effective way to screen this highly mobile occupational segment. This approach should constitute one component of comprehensive efforts to diagnose and treat sleep disorders among commercial transport operators.
长途卡车司机的睡眠健康状况较差,事故发生率较高,未确诊的睡眠障碍是导致这些负面结果的原因之一。主观睡眠障碍筛查工具可能有助于发现司机的睡眠障碍。本研究旨在评估主观筛查方法在检测潜在睡眠障碍以及识别易患睡眠健康不良和与安全相关的表现的卡车司机方面的价值。
本研究使用了 260 名长途卡车司机的横断面数据:1)使用因子分析来识别潜在的睡眠障碍;2)通过确定与已建立的睡眠障碍危险因素和症状的关联来探索提取的睡眠障碍因子的结构有效性;3)通过确定与睡眠健康和安全相关的表现的关联来探索提取的睡眠障碍因子的预测有效性。
提取了五个潜在的睡眠障碍因子:1)昼夜节律睡眠障碍;2)睡眠相关呼吸障碍;3)睡眠相关运动障碍;4)睡眠相关呼吸障碍;5)睡眠相关运动障碍。这些因素之间的关联模式通常与已知的危险因素和症状相对应。提取的一个或多个潜在睡眠障碍因子与所有睡眠健康和安全结局均显著相关。
使用主观睡眠问题来检测长途卡车司机的潜在睡眠障碍可能是及时有效地筛查这一高度流动职业群体的一种方法。这种方法应该成为诊断和治疗商业运输操作人员睡眠障碍的综合努力的一个组成部分。