Departments of Pharmacology and Toxicology, Augusta, GA 30912, United States.
Departments of Pharmacology and Toxicology, Augusta, GA 30912, United States; Neurology Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
Neurochem Int. 2018 Jul;117:91-113. doi: 10.1016/j.neuint.2018.03.001. Epub 2018 Mar 14.
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorder characterized by preferential loss of dopaminergic neurons of the substantia nigra pars compacta and the presence of Lewy bodies containing α-synuclein. Although the cause of PD remains elusive, remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. An explosion of discoveries during the past two decades has led to the identification of several autosomal dominant and recessive genes that cause familial forms of PD. The investigations of these familial PD gene products have shed considerable insights into the molecular pathogenesis of the more common sporadic PD. A growing body of evidence suggests that the etiology of PD is multifactorial and involves a complex interplay between genetic and environmental factors. Substantial evidence from human tissues, genetic and toxin-induced animal and cellular models indicates that mitochondrial dysfunction plays a central role in the pathophysiology of PD. Deficits in mitochondrial functions due to bioenergetics defects, alterations in the mitochondrial DNA, generation of reactive oxygen species, aberrant calcium homeostasis, and anomalies in mitochondrial dynamics and quality control are implicated in the underlying mechanisms of neuronal cell death in PD. In this review, we discuss how familial PD-linked genes and environmental factors interface the pathways regulating mitochondrial functions and thereby potentially converge both familial and sporadic PD at the level of mitochondrial integrity. We also provide an overview of the status of therapeutic strategies targeting mitochondrial dysfunction in PD. Unraveling potential pathways that influence mitochondrial homeostasis in PD may hold the key to therapeutic intervention for this debilitating neurodegenerative movement disorder.
帕金森病(PD)是最常见的神经退行性运动障碍之一,其特征是黑质致密部多巴胺能神经元的优先丧失和含有α-突触核蛋白的路易体的存在。尽管 PD 的病因仍不清楚,但在理解 PD 发病机制的可能致病机制方面已经取得了显著进展。在过去的二十年中,大量的发现导致了几个常染色体显性和隐性基因的鉴定,这些基因导致家族性 PD。对这些家族性 PD 基因产物的研究为更常见的散发性 PD 的分子发病机制提供了重要的见解。越来越多的证据表明,PD 的病因是多因素的,涉及遗传和环境因素之间的复杂相互作用。来自人类组织、遗传和毒素诱导的动物和细胞模型的大量证据表明,线粒体功能障碍在 PD 的病理生理学中起着核心作用。由于生物能缺陷、线粒体 DNA 改变、活性氧生成、钙稳态异常以及线粒体动力学和质量控制异常导致的线粒体功能缺陷,与 PD 神经元细胞死亡的潜在机制有关。在这篇综述中,我们讨论了家族性 PD 相关基因和环境因素如何与调节线粒体功能的途径相互作用,从而可能在家族性和散发性 PD 的线粒体完整性水平上潜在地汇聚。我们还概述了针对 PD 中线粒体功能障碍的治疗策略的现状。阐明影响 PD 中线粒体动态平衡的潜在途径可能是治疗这种使人衰弱的神经退行性运动障碍的关键。