Suppr超能文献

HIV-1 gp41 膜相互作用域拓扑结构的结构可塑性。

Structural plasticity in the topology of the membrane-interacting domain of HIV-1 gp41.

机构信息

Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas.

Department of Chemistry, University of California, Irvine, California.

出版信息

Biophys J. 2014 Feb 4;106(3):610-20. doi: 10.1016/j.bpj.2013.12.032.

Abstract

We use a number of computational and experimental approaches to investigate the membrane topology of the membrane-interacting C-terminal domain of the HIV-1 gp41 fusion protein. Several putative transmembrane regions are identified using hydrophobicity analysis based on the Wimley-White scales, including the membrane-proximal external region (MPER). The MPER region is an important target for neutralizing anti-HIV monoclonal antibodies and is believed to have an interfacial topology in the membrane. To assess the possibility of a transmembrane topology of MPER, we examined the membrane interactions of a peptide corresponding to a 22-residue stretch of the MPER sequence (residues 662-683) using fluorescence spectroscopy and oriented circular dichroism. In addition to the previously reported interfacial location, we identify a stable transmembrane conformation of the peptide in synthetic lipid bilayers. All-atom molecular dynamics simulations of the MPER-derived peptide in a lipid bilayer demonstrate a stable helical structure with an average tilt of 24 degrees, with the five tryptophan residues sampling different environments inside the hydrocarbon core of the lipid bilayer, consistent with the observed spectral properties of intrinsic fluorescence. The degree of lipid bilayer penetration obtained by computer simulation was verified using depth-dependent fluorescence quenching of a selectively attached fluorescence probe. Overall, our data indicate that the MPER sequence can have at least two stable conformations in the lipid bilayer, interfacial and transmembrane, and suggest a possibility that external perturbations can switch the topology during physiological functioning.

摘要

我们使用了多种计算和实验方法来研究 HIV-1 gp41 融合蛋白的膜相互作用 C 端结构域的膜拓扑结构。我们使用基于 Wimley-White 标度的疏水性分析来识别几个假定的跨膜区域,包括膜近端外部区域(MPER)。MPER 区域是中和抗 HIV 单克隆抗体的重要靶标,据信在膜中具有界面拓扑结构。为了评估 MPER 的跨膜拓扑结构的可能性,我们使用荧光光谱法和定向圆二色性法研究了对应于 MPER 序列 22 个残基的肽的膜相互作用。除了先前报道的界面位置外,我们在合成脂质双层中确定了肽的稳定跨膜构象。MPER 衍生肽在脂质双层中的全原子分子动力学模拟表明,该肽具有稳定的螺旋结构,平均倾斜度为 24 度,五个色氨酸残基在脂质双层的烃核内采样不同的环境,与观察到的固有荧光的光谱特性一致。通过计算机模拟获得的脂质双层穿透程度通过选择性附着荧光探针的深度依赖性荧光猝灭进行了验证。总的来说,我们的数据表明,MPER 序列在脂质双层中至少可以有两种稳定的构象,即界面和跨膜,并且暗示外部干扰可能在生理功能过程中切换拓扑结构的可能性。

相似文献

1
Structural plasticity in the topology of the membrane-interacting domain of HIV-1 gp41.
Biophys J. 2014 Feb 4;106(3):610-20. doi: 10.1016/j.bpj.2013.12.032.
4
Cholesterol-Mediated Clustering of the HIV Fusion Protein gp41 in Lipid Bilayers.
J Mol Biol. 2022 Jan 30;434(2):167345. doi: 10.1016/j.jmb.2021.167345. Epub 2021 Nov 8.
5
Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers.
J Biol Chem. 2019 Oct 4;294(40):14732-14744. doi: 10.1074/jbc.RA119.009542. Epub 2019 Aug 13.
7
Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22556-22566. doi: 10.1073/pnas.1912427116. Epub 2019 Oct 17.
8
Molecular recognition of a membrane-anchored HIV-1 pan-neutralizing epitope.
Commun Biol. 2022 Nov 18;5(1):1265. doi: 10.1038/s42003-022-04219-6.
9
Exposure of the HIV-1 broadly neutralizing antibody 10E8 MPER epitope on the membrane surface by gp41 transmembrane domain scaffolds.
Biochim Biophys Acta Biomembr. 2018 Jun;1860(6):1259-1271. doi: 10.1016/j.bbamem.2018.02.019. Epub 2018 Feb 23.

引用本文的文献

1
The difference between MelP5 and melittin membrane poration.
Sci Rep. 2025 Mar 3;15(1):7442. doi: 10.1038/s41598-025-91951-8.
2
Advancements in fluorescent labeling in assessing the probiotic adhesion capacity - A review.
World J Microbiol Biotechnol. 2025 Feb 27;41(3):73. doi: 10.1007/s11274-024-04186-6.
3
Fluorescent Probes and Quenchers in Studies of Protein Folding and Protein-Lipid Interactions.
Chem Rec. 2024 Feb;24(2):e202300232. doi: 10.1002/tcr.202300232. Epub 2023 Sep 11.
4
Determination of the boundary lipids of sticholysins using tryptophan quenching.
Sci Rep. 2022 Oct 15;12(1):17328. doi: 10.1038/s41598-022-21750-y.
5
Spectroscopic evidence of tetanus toxin translocation domain bilayer-induced refolding and insertion.
Biophys J. 2021 Nov 2;120(21):4763-4776. doi: 10.1016/j.bpj.2021.09.030. Epub 2021 Sep 21.
6
Conformational switching, refolding and membrane insertion of the diphtheria toxin translocation domain.
Methods Enzymol. 2021;649:341-370. doi: 10.1016/bs.mie.2020.12.016. Epub 2021 Feb 2.
7
Location of TEMPO-PC in Lipid Bilayers: Implications for Fluorescence Quenching.
J Membr Biol. 2020 Feb;253(1):73-77. doi: 10.1007/s00232-019-00094-1. Epub 2019 Sep 20.
8
Lipid-modulation of membrane insertion and refolding of the apoptotic inhibitor Bcl-xL.
Biochim Biophys Acta Proteins Proteom. 2019 Jul-Aug;1867(7-8):691-700. doi: 10.1016/j.bbapap.2019.04.006. Epub 2019 Apr 18.
9
Mechanistic Landscape of Membrane-Permeabilizing Peptides.
Chem Rev. 2019 May 8;119(9):6040-6085. doi: 10.1021/acs.chemrev.8b00520. Epub 2019 Jan 9.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Refining membrane penetration by a combination of steady-state and time-resolved depth-dependent fluorescence quenching.
Anal Biochem. 2014 Feb 1;446:19-21. doi: 10.1016/j.ab.2013.10.015. Epub 2013 Oct 18.
3
Molecular dynamics simulations of depth distribution of spin-labeled phospholipids within lipid bilayer.
J Phys Chem B. 2013 May 16;117(19):5875-85. doi: 10.1021/jp4026706. Epub 2013 May 8.
5
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
7
C-terminal tail of human immunodeficiency virus gp41: functionally rich and structurally enigmatic.
J Gen Virol. 2013 Jan;94(Pt 1):1-19. doi: 10.1099/vir.0.046508-0. Epub 2012 Oct 17.
8
Gain-of-function analogues of the pore-forming peptide melittin selected by orthogonal high-throughput screening.
J Am Chem Soc. 2012 Aug 1;134(30):12732-41. doi: 10.1021/ja3042004. Epub 2012 Jul 18.
9
Mechanism of membrane perturbation by the HIV-1 gp41 membrane-proximal external region and its modulation by cholesterol.
Biochim Biophys Acta. 2012 Nov;1818(11):2521-8. doi: 10.1016/j.bbamem.2012.06.002. Epub 2012 Jun 9.
10
Thermodynamic measurements of bilayer insertion of a single transmembrane helix chaperoned by fluorinated surfactants.
J Mol Biol. 2012 Feb 24;416(3):328-34. doi: 10.1016/j.jmb.2011.12.037. Epub 2011 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验