Suppr超能文献

从运动捕捉中预测运动员的地面反作用力和力矩。

Predicting athlete ground reaction forces and moments from motion capture.

机构信息

School of Human Sciences, The University of Western Australia, Perth, Australia.

School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia.

出版信息

Med Biol Eng Comput. 2018 Oct;56(10):1781-1792. doi: 10.1007/s11517-018-1802-7. Epub 2018 Mar 17.

Abstract

An understanding of athlete ground reaction forces and moments (GRF/Ms) facilitates the biomechanist's downstream calculation of net joint forces and moments, and associated injury risk. Historically, force platforms used to collect kinetic data are housed within laboratory settings and are not suitable for field-based installation. Given that Newton's Second Law clearly describes the relationship between a body's mass, acceleration, and resultant force, is it possible that marker-based motion capture can represent these parameters sufficiently enough to estimate GRF/Ms, and thereby minimize our reliance on surface embedded force platforms? Specifically, can we successfully use partial least squares (PLS) regression to learn the relationship between motion capture and GRF/Ms data? In total, we analyzed 11 PLS methods and achieved average correlation coefficients of 0.9804 for GRFs and 0.9143 for GRMs. Our results demonstrate the feasibility of predicting accurate GRF/Ms from raw motion capture trajectories in real-time, overcoming what has been a significant barrier to non-invasive collection of such data. In applied biomechanics research, this outcome has the potential to revolutionize athlete performance enhancement and injury prevention. Graphical Abstract Using data science to model high-fidelity motion and force plate data frees biomechanists from the laboratory.

摘要

了解运动员地面反作用力和力矩(GRF/Ms)有助于生物力学学家对净关节力和力矩进行下游计算,并评估相关的受伤风险。从历史上看,用于收集动力学数据的力台通常安装在实验室环境中,并不适合现场安装。既然牛顿第二定律清楚地描述了物体的质量、加速度和合力之间的关系,那么基于标记的运动捕捉是否可以充分代表这些参数,从而最大限度地减少我们对嵌入式力台的依赖,以估计 GRF/Ms?具体来说,我们能否成功使用偏最小二乘(PLS)回归来学习运动捕捉和 GRF/Ms 数据之间的关系?总的来说,我们分析了 11 种 PLS 方法,GRF 的平均相关系数为 0.9804,GRM 的平均相关系数为 0.9143。我们的研究结果表明,从实时的原始运动捕捉轨迹中预测准确的 GRF/Ms 是可行的,克服了非侵入式收集此类数据的一个重大障碍。在应用生物力学研究中,这一结果有可能彻底改变运动员的表现提升和损伤预防。图摘要 使用数据科学对高保真运动和力板数据进行建模,使生物力学学家摆脱了实验室的束缚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验