Obrero Jose M, Filippin Alejandro N, Alcaire Maria, Sanchez-Valencia Juan R, Jacob Martin, Matei Constantin, Aparicio Francisco J, Macias-Montero Manuel, Rojas Teresa C, Espinos Juan P, Saghi Zineb, Barranco Angel, Borras Ana
Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain.
Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville, Spain.
Front Chem. 2020 Jun 17;8:520. doi: 10.3389/fchem.2020.00520. eCollection 2020.
The large area scalable fabrication of supported porous metal and metal oxide nanomaterials is acknowledged as one of the greatest challenges for their eventual implementation in on-device applications. In this work, we will present a comprehensive revision and the latest results regarding the pioneering use of commercially available metal phthalocyanines and porphyrins as solid precursors for the plasma-assisted deposition of porous metal and metal oxide films and three-dimensional nanostructures (hierarchical nanowires and nanotubes). The most advanced features of this method relay on its ample general character from the point of view of the porous material composition and microstructure, mild deposition and processing temperature and energy constrictions and, finally, its straightforward compatibility with the direct deposition of the porous nanomaterials on processable substrates and device-architectures. Thus, taking advantage of the variety in the composition of commercially available metal porphyrins and phthalocyanines, we present the development of metal and metal oxides layers including Pt, CuO, FeO, TiO, and ZnO with morphologies ranging from nanoparticles to nanocolumnar films. In addition, we combine this method with the fabrication by low-pressure vapor transport of single-crystalline organic nanowires for the formation of hierarchical hybrid organic@metal/metal-oxide and @metal/metal-oxide nanotubes. We carry out a thorough characterization of the films and nanowires using SEM, TEM, FIB 3D, and electron tomography. The latest two techniques are revealed as critical for the elucidation of the inner porosity of the layers.
大面积可扩展制备负载型多孔金属和金属氧化物纳米材料被认为是它们最终应用于器件中的最大挑战之一。在这项工作中,我们将全面回顾并展示关于首次使用市售金属酞菁和卟啉作为等离子体辅助沉积多孔金属和金属氧化物薄膜以及三维纳米结构(分级纳米线和纳米管)的固体前驱体的最新成果。从多孔材料的组成和微观结构、温和的沉积和加工温度以及能量限制的角度来看,该方法最先进的特点在于其广泛的通用性,最终还在于它与在可加工衬底和器件结构上直接沉积多孔纳米材料的直接兼容性。因此,利用市售金属卟啉和酞菁组成的多样性,我们展示了包括Pt、CuO、FeO、TiO和ZnO等金属和金属氧化物层的开发,其形态从纳米颗粒到纳米柱状薄膜不等。此外,我们将该方法与通过低压气相传输制备单晶有机纳米线相结合,以形成分级杂化有机@金属/金属氧化物和@金属/金属氧化物纳米管。我们使用SEM、TEM、FIB 3D和电子断层扫描对薄膜和纳米线进行了全面表征。结果表明,后两种技术对于阐明层的内部孔隙率至关重要。