Suppr超能文献

推进分析方法,解决行为改变研究机制中的关键问题。

Advancing Analytic Approaches to Address Key Questions in Mechanisms of Behavior Change Research.

机构信息

Behavioral Research in Technology and Engineering (BRiTE) Center, Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington.

Center on Alcoholism, Substance Abuse, and Addictions (CASAA) and Department of Psychology, University of New Mexico, Albuquerque, New Mexico.

出版信息

J Stud Alcohol Drugs. 2018 Mar;79(2):182-189. doi: 10.15288/jsad.2018.79.182.

Abstract

OBJECTIVE

Interest in studying mechanisms of behavior change (MOBCs) in substance use disorder (SUD) treatments has grown considerably in the past two decades. Much of this work has focused on identifying which variables statistically mediate the effect of SUD treatments on clinical outcomes. However, a fuller conceptualization of MOBCs will require greater understanding of questions that extend beyond traditional mediation analysis, including better understanding of when MOBCs change during treatment, when they are most critical to aiding the initiation or maintenance of change, and how MOBCs themselves arise as a function of treatment processes.

METHOD

In the present study, we review why these MOBC-related questions are often minimally addressed in empirical research and provide examples of data analytic methods that may address these issues. We highlight several recent studies that have used such methods and discuss how these methods can provide unique theoretical insights and actionable clinical information.

RESULTS

Several statistical approaches can enhance the field's understanding of the timing and development of MOBCs, including growth-curve modeling, time-varying effect modeling, moderated mediation analysis, dynamic systems modeling, and simulation methods.

CONCLUSIONS

Adopting greater diversity in methods for modeling MOBCs will help researchers better understand the timing and development of key change variables and will expand the theoretical precision and clinical impact of MOBC research. Advances in research design, measurement, and technology are key to supporting these advances.

摘要

目的

在过去的二十年中,人们对研究物质使用障碍(SUD)治疗中行为改变机制(MOBC)的兴趣大大增加。这项工作的很大一部分重点是确定哪些变量可以从统计学上解释 SUD 治疗对临床结果的影响。然而,更全面地理解 MOBC 需要更深入地了解超出传统中介分析范围的问题,包括更好地理解 MOBC 在治疗过程中何时发生变化、何时对促进或维持变化最关键,以及 MOBC 本身如何作为治疗过程的一个函数而出现。

方法

在本研究中,我们回顾了为什么这些与 MOBC 相关的问题在实证研究中通常很少被提及,并提供了可能解决这些问题的数据分析方法的示例。我们强调了一些最近使用这些方法的研究,并讨论了这些方法如何提供独特的理论见解和可操作的临床信息。

结果

几种统计方法可以增强人们对 MOBC 时机和发展的理解,包括增长曲线模型、时变效应模型、调节中介分析、动态系统模型和模拟方法。

结论

采用更多样化的 MOBC 建模方法将有助于研究人员更好地理解关键变化变量的时机和发展,并提高 MOBC 研究的理论精确性和临床影响力。研究设计、测量和技术的进步是支持这些进展的关键。

相似文献

8

引用本文的文献

本文引用的文献

7
Technology-enhanced human interaction in psychotherapy.心理治疗中技术增强的人际互动。
J Couns Psychol. 2017 Jul;64(4):385-393. doi: 10.1037/cou0000213. Epub 2017 Mar 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验