Suppr超能文献

推进分析方法,解决行为改变研究机制中的关键问题。

Advancing Analytic Approaches to Address Key Questions in Mechanisms of Behavior Change Research.

机构信息

Behavioral Research in Technology and Engineering (BRiTE) Center, Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington.

Center on Alcoholism, Substance Abuse, and Addictions (CASAA) and Department of Psychology, University of New Mexico, Albuquerque, New Mexico.

出版信息

J Stud Alcohol Drugs. 2018 Mar;79(2):182-189. doi: 10.15288/jsad.2018.79.182.

Abstract

OBJECTIVE

Interest in studying mechanisms of behavior change (MOBCs) in substance use disorder (SUD) treatments has grown considerably in the past two decades. Much of this work has focused on identifying which variables statistically mediate the effect of SUD treatments on clinical outcomes. However, a fuller conceptualization of MOBCs will require greater understanding of questions that extend beyond traditional mediation analysis, including better understanding of when MOBCs change during treatment, when they are most critical to aiding the initiation or maintenance of change, and how MOBCs themselves arise as a function of treatment processes.

METHOD

In the present study, we review why these MOBC-related questions are often minimally addressed in empirical research and provide examples of data analytic methods that may address these issues. We highlight several recent studies that have used such methods and discuss how these methods can provide unique theoretical insights and actionable clinical information.

RESULTS

Several statistical approaches can enhance the field's understanding of the timing and development of MOBCs, including growth-curve modeling, time-varying effect modeling, moderated mediation analysis, dynamic systems modeling, and simulation methods.

CONCLUSIONS

Adopting greater diversity in methods for modeling MOBCs will help researchers better understand the timing and development of key change variables and will expand the theoretical precision and clinical impact of MOBC research. Advances in research design, measurement, and technology are key to supporting these advances.

摘要

目的

在过去的二十年中,人们对研究物质使用障碍(SUD)治疗中行为改变机制(MOBC)的兴趣大大增加。这项工作的很大一部分重点是确定哪些变量可以从统计学上解释 SUD 治疗对临床结果的影响。然而,更全面地理解 MOBC 需要更深入地了解超出传统中介分析范围的问题,包括更好地理解 MOBC 在治疗过程中何时发生变化、何时对促进或维持变化最关键,以及 MOBC 本身如何作为治疗过程的一个函数而出现。

方法

在本研究中,我们回顾了为什么这些与 MOBC 相关的问题在实证研究中通常很少被提及,并提供了可能解决这些问题的数据分析方法的示例。我们强调了一些最近使用这些方法的研究,并讨论了这些方法如何提供独特的理论见解和可操作的临床信息。

结果

几种统计方法可以增强人们对 MOBC 时机和发展的理解,包括增长曲线模型、时变效应模型、调节中介分析、动态系统模型和模拟方法。

结论

采用更多样化的 MOBC 建模方法将有助于研究人员更好地理解关键变化变量的时机和发展,并提高 MOBC 研究的理论精确性和临床影响力。研究设计、测量和技术的进步是支持这些进展的关键。

相似文献

1
Advancing Analytic Approaches to Address Key Questions in Mechanisms of Behavior Change Research.
J Stud Alcohol Drugs. 2018 Mar;79(2):182-189. doi: 10.15288/jsad.2018.79.182.
3
The Translational Value of Psychophysiology Methods and Mechanisms: Multilevel, Dynamic, Personalized.
J Stud Alcohol Drugs. 2018 Mar;79(2):229-238. doi: 10.15288/jsad.2018.79.229.
8
9
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
Beyond mediators: A critical review and methodological path forward for studying mechanisms in alcohol use treatment research.
Alcohol Clin Exp Res (Hoboken). 2024 Feb;48(2):215-229. doi: 10.1111/acer.15242. Epub 2023 Dec 27.

引用本文的文献

1
Improving Social Recovery Capital Research To Enhance Clinical Utility: A Proposed Agenda.
Addict Res Theory. 2024;32(3):153-159. doi: 10.1080/16066359.2023.2224964. Epub 2023 Jun 20.
4
Reductions in WHO risk drinking levels correlate with alcohol craving among individuals with alcohol use disorder.
Alcohol Clin Exp Res (Hoboken). 2024 Feb;48(2):420-429. doi: 10.1111/acer.15257. Epub 2024 Jan 11.
5
Beyond mediators: A critical review and methodological path forward for studying mechanisms in alcohol use treatment research.
Alcohol Clin Exp Res (Hoboken). 2024 Feb;48(2):215-229. doi: 10.1111/acer.15242. Epub 2023 Dec 27.
8
Addictions treatment mechanisms of change science and implementation science: A critical review.
Alcohol Clin Exp Res (Hoboken). 2023 May;47(5):827-839. doi: 10.1111/acer.15053. Epub 2023 Mar 23.

本文引用的文献

1
Simulating drinking in social networks to inform alcohol prevention and treatment efforts.
Psychol Addict Behav. 2017 Nov;31(7):763-774. doi: 10.1037/adb0000308. Epub 2017 Sep 18.
2
Comparing models of change to estimate the mediated effect in the pretest-posttest control group design.
Struct Equ Modeling. 2017;24(3):428-450. doi: 10.1080/10705511.2016.1274657. Epub 2017 Feb 8.
3
Moving alcohol prevention research forward-Part I: introducing a complex systems paradigm.
Addiction. 2018 Feb;113(2):353-362. doi: 10.1111/add.13955. Epub 2017 Aug 25.
4
A multivariate meta-analysis of motivational interviewing process and outcome.
Psychol Addict Behav. 2017 Aug;31(5):524-533. doi: 10.1037/adb0000280. Epub 2017 Jun 22.
5
Group motivational interviewing for homeless young adults: Associations of change talk with substance use and sexual risk behavior.
Psychol Addict Behav. 2017 Sep;31(6):688-698. doi: 10.1037/adb0000288. Epub 2017 Jun 19.
6
Digital technology and clinical decision making in depression treatment: Current findings and future opportunities.
Depress Anxiety. 2017 Jun;34(6):494-501. doi: 10.1002/da.22640. Epub 2017 Apr 28.
7
Technology-enhanced human interaction in psychotherapy.
J Couns Psychol. 2017 Jul;64(4):385-393. doi: 10.1037/cou0000213. Epub 2017 Mar 20.
8
Time-varying effect modeling to address new questions in behavioral research: Examples in marijuana use.
Psychol Addict Behav. 2016 Dec;30(8):939-954. doi: 10.1037/adb0000208. Epub 2016 Oct 13.
10
Accuracy of Estimates and Statistical Power for Testing Meditation in Latent Growth Curve Modeling.
Struct Equ Modeling. 2011;18(2):195-211. doi: 10.1080/10705511.2011.557334. Epub 2011 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验