Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America.
Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America.
PLoS One. 2018 Mar 19;13(3):e0194485. doi: 10.1371/journal.pone.0194485. eCollection 2018.
Duchenne muscular dystrophy (DMD) causes progressive disability in 1 of every 5,000 boys due to the lack of functional dystrophin protein. Despite much advancement in knowledge about DMD disease presentation and progression-attributable in part to studies using mouse and canine models of the disease-current DMD treatments are not equally effective in all patients. There remains, therefore, a need for translational animal models in which novel treatment targets can be identified and evaluated. Golden Retriever muscular dystrophy (GRMD) is a phenotypically and genetically homologous animal model of DMD. As with DMD, speed of disease progression in GRMD varies substantially. However, unlike DMD, all GRMD dogs possess the same causal mutation; therefore genetic modifiers of phenotypic variation are relatively easier to identify. Furthermore, the GRMD dogs used in this study reside within the same colony, reducing the confounding effects of environment on phenotypic variation. To detect modifiers of disease progression, we developed gene expression profiles using RNA sequencing for 9 dogs: 6 GRMD dogs (3 with faster-progressing and 3 with slower-progressing disease, based on quantitative, objective biomarkers) and 3 control dogs from the same colony. All dogs were evaluated at 2 time points: early disease onset (3 months of age) and the point at which GRMD stabilizes (6 months of age) using quantitative, objective biomarkers identified as robust against the effects of relatedness/inbreeding. Across all comparisons, the most differentially expressed genes fell into 3 categories: myogenesis/muscle regeneration, metabolism, and inflammation. Our findings are largely in concordance with DMD and mouse model studies, reinforcing the utility of GRMD as a translational model. Novel findings include the strong up-regulation of chitinase 3-like 1 (CHI3L1) in faster-progressing GRMD dogs, suggesting previously unexplored mechanisms underlie progression speed in GRMD and DMD. In summary, our findings support the utility of RNA sequencing for evaluating potential biomarkers of GRMD progression speed, and are valuable for identifying new avenues of exploration in DMD research.
杜氏肌营养不良症(DMD)导致每 5000 名男孩中就有 1 名因缺乏功能性肌营养不良蛋白而逐渐丧失能力。尽管人们对 DMD 的疾病表现和进展有了更多的了解——这在一定程度上要归功于使用疾病的小鼠和犬模型进行的研究——但目前的 DMD 治疗方法并非对所有患者都同样有效。因此,仍然需要转化动物模型,以便确定和评估新的治疗靶点。金毛寻回犬肌肉营养不良症(GRMD)是 DMD 的一种表型和遗传同源动物模型。与 DMD 一样,GRMD 的疾病进展速度差异很大。然而,与 DMD 不同的是,所有 GRMD 犬都携带相同的致病突变;因此,表型变异的遗传修饰因子相对更容易识别。此外,本研究中使用的 GRMD 犬都来自同一个品系,从而减少了环境对表型变异的混杂影响。为了检测疾病进展的修饰因子,我们使用 RNA 测序为 9 只狗开发了基因表达谱:6 只 GRMD 狗(3 只疾病进展较快,3 只疾病进展较慢,基于定量、客观的生物标志物)和 3 只来自同一品系的对照狗。所有狗都在两个时间点进行评估:早期疾病发作(3 个月大)和 GRMD 稳定(6 个月大),使用定量、客观的生物标志物进行评估,这些标志物被证明能抵抗亲缘关系/近交的影响。在所有比较中,差异表达最明显的基因分为 3 类:肌肉生成/肌肉再生、代谢和炎症。我们的发现与 DMD 和小鼠模型研究基本一致,进一步证实了 GRMD 作为转化模型的效用。新的发现包括在进展较快的 GRMD 犬中强烈上调的几丁质酶 3 样蛋白 1(CHI3L1),这表明 GRMD 和 DMD 中进展速度的背后存在以前未被探索的机制。总之,我们的研究结果支持 RNA 测序用于评估 GRMD 进展速度的潜在生物标志物的效用,并为 DMD 研究中探索新途径提供了有价值的信息。