Department of Microbiology and Immunology University of North Carolina at Chapel Hill Chapel Hill, North Carolina, United States of America.
Department of Microbiology and Molecular Genetics University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
PLoS Pathog. 2018 Mar 19;14(3):e1006907. doi: 10.1371/journal.ppat.1006907. eCollection 2018 Mar.
Staphylococcus aureus exhibits many defenses against host innate immunity, including the ability to replicate in the presence of nitric oxide (NO·). S. aureus NO· resistance is a complex trait and hinges on the ability of this pathogen to metabolically adapt to the presence of NO·. Here, we employed deep sequencing of transposon junctions (Tn-Seq) in a library generated in USA300 LAC to define the complete set of genes required for S. aureus NO· resistance. We compared the list of NO·-resistance genes to the set of genes required for LAC to persist within murine skin infections (SSTIs). In total, we identified 168 genes that were essential for full NO· resistance, of which 49 were also required for S. aureus to persist within SSTIs. Many of these NO·-resistance genes were previously demonstrated to be required for growth in the presence of this immune radical. However, newly defined genes, including those encoding SodA, MntABC, RpoZ, proteins involved with Fe-S-cluster repair/homeostasis, UvrABC, thioredoxin-like proteins and the F1F0 ATPase, have not been previously reported to contribute to S. aureus NO· resistance. The most striking finding was that loss of any genes encoding components of the F1F0 ATPase resulted in mutants unable to grow in the presence of NO· or any other condition that inhibits cellular respiration. In addition, these mutants were highly attenuated in murine SSTIs. We show that in S. aureus, the F1F0 ATPase operates in the ATP-hydrolysis mode to extrude protons and contribute to proton-motive force. Loss of efficient proton extrusion in the ΔatpG mutant results in an acidified cytosol. While this acidity is tolerated by respiring cells, enzymes required for fermentation cannot operate efficiently at pH ≤ 7.0 and the ΔatpG mutant cannot thrive. Thus, S. aureus NO· resistance requires a mildly alkaline cytosol, a condition that cannot be achieved without an active F1F0 ATPase enzyme complex.
金黄色葡萄球菌表现出许多防御机制来对抗宿主先天免疫系统,包括在存在一氧化氮(NO·)的情况下进行复制的能力。金黄色葡萄球菌对 NO·的抗性是一种复杂的特征,取决于该病原体代谢适应 NO·存在的能力。在这里,我们利用 USA300 LAC 中生成的文库中转座子连接(Tn-Seq)的深度测序来定义金黄色葡萄球菌对 NO·抗性所需的完整基因集。我们将 NO·抗性基因列表与 LAC 在小鼠皮肤感染(SSTIs)中持续存在所需的基因集进行了比较。总共,我们确定了 168 个对完全 NO·抗性至关重要的基因,其中 49 个基因也是金黄色葡萄球菌在 SSTIs 中持续存在所必需的。这些 NO·抗性基因中的许多先前被证明是在存在这种免疫自由基的情况下生长所必需的。然而,新定义的基因,包括编码 SodA、MntABC、RpoZ、涉及 Fe-S 簇修复/动态平衡的蛋白质、UvrABC、硫氧还蛋白样蛋白和 F1F0 ATP 酶的基因,以前并未报道过有助于金黄色葡萄球菌对 NO·的抗性。最引人注目的发现是,任何编码 F1F0 ATP 酶组件的基因缺失都会导致突变体无法在存在 NO·或任何其他抑制细胞呼吸的条件下生长。此外,这些突变体在小鼠 SSTIs 中高度衰减。我们表明,在金黄色葡萄球菌中,F1F0 ATP 酶以 ATP 水解模式运作,以排出质子并有助于质子动力。在 ΔatpG 突变体中,有效质子排出的丧失导致细胞质酸化。虽然这种酸度可以被呼吸细胞耐受,但发酵所需的酶在 pH≤7.0 时无法高效运行,而 ΔatpG 突变体无法茁壮成长。因此,金黄色葡萄球菌对 NO·的抗性需要一个微碱性的细胞质,而没有活性的 F1F0 ATP 酶复合物是无法实现这一条件的。