Suppr超能文献

倾向评分匹配策略在亚组分析中的相对表现。

Relative Performance of Propensity Score Matching Strategies for Subgroup Analyses.

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California, Oakland, California.

出版信息

Am J Epidemiol. 2018 Aug 1;187(8):1799-1807. doi: 10.1093/aje/kwy049.

Abstract

Postapproval drug safety studies often use propensity scores (PSs) to adjust for a large number of baseline confounders. These studies may involve examining whether treatment safety varies across subgroups. There are many ways a PS could be used to adjust for confounding in subgroup analyses. These methods have trade-offs that are not well understood. We conducted a plasmode simulation to compare relative performance of 5 methods involving PS matching for subgroup analysis, including methods frequently used in applied literature whose performance has not been previously directly compared. These methods varied as to whether the overall PS, subgroup-specific PS, or no rematching was used in subgroup analysis as well as whether subgroups were fully nested within the main analytical cohort. The evaluated PS subgroup matching methods performed similarly in terms of balance, bias, and precision in 12 simulated scenarios varying size of the cohort, prevalence of exposure and outcome, strength of relationships between baseline covariates and exposure, the true effect within subgroups, and the degree of confounding within subgroups. Each had strengths and limitations with respect to other performance metrics that could inform choice of method.

摘要

事后药物安全性研究通常使用倾向评分 (PS) 来调整大量基线混杂因素。这些研究可能涉及检查治疗安全性是否在亚组之间存在差异。有许多方法可以使用 PS 来调整亚组分析中的混杂因素。这些方法具有尚未很好理解的权衡取舍。我们进行了一个 plasmode 模拟,以比较涉及 PS 匹配的 5 种方法在亚组分析中的相对表现,其中包括在应用文献中经常使用的方法,但其性能以前没有直接比较过。这些方法在亚组分析中使用整体 PS、亚组特定 PS 或不重新匹配以及亚组是否完全嵌套在主要分析队列中有差异。在所评估的 PS 亚组匹配方法中,在 12 种模拟情景下(队列大小、暴露和结局的流行程度、基线协变量与暴露之间的关系强度、亚组内的真实效应以及亚组内的混杂程度),在平衡、偏差和精度方面表现相似。每种方法在其他性能指标方面都有优势和局限性,这可以为方法选择提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验