Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
Med Decis Making. 2018 Apr;38(1_suppl):32S-43S. doi: 10.1177/0272989X17743236.
As molecular subtyping of breast cancer influences clinical management, the evaluation of screening and adjuvant treatment interventions at the population level needs to account for molecular subtyping. Performing such analyses are challenging because molecular subtype-specific, long-term outcomes are not readily accessible; these markers were not historically recorded in tumor registries. We present a modeling approach to estimate historical survival outcomes by estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) status.
Our approach leverages a simulation model of breast cancer outcomes and integrates data from two sources: the Surveillance Epidemiology and End Results (SEER) databases and the Breast Cancer Surveillance Consortium (BCSC). We not only produce ER- and HER2-specific estimates of breast cancer survival in the absence of screening and adjuvant treatment but we also estimate mean tumor volume doubling time (TVDT) and mean mammographic detection threshold by ER/HER2-status.
In general, we found that tumors with ER-negative and HER2-positive status are associated with more aggressive growth, have lower TVDTs, are harder to detect by mammography, and have worse survival outcomes in the absence of screening and adjuvant treatment. Our estimates have been used as inputs into model-based analyses that evaluate the effects of screening and adjuvant treatment interventions on population outcomes by ER and HER2 status developed by the Cancer Intervention and Surveillance Modeling Network (CISNET) Breast Cancer Working Group. In addition, our estimates enable a re-assessment of historical trends in breast cancer incidence and mortality in terms of contemporary molecular tumor characteristics.
Our approach can be generalized beyond breast cancer and to more complex molecular profiles.
由于乳腺癌的分子亚型会影响临床管理,因此需要在人群层面上评估筛查和辅助治疗干预措施的分子亚型。进行此类分析具有挑战性,因为无法轻易获得分子亚型特异性的长期结果;这些标志物在肿瘤登记处并未被记录。我们提出了一种通过雌激素受体(ER)和人表皮生长因子受体 2(HER2)状态来估计历史生存结果的建模方法。
我们的方法利用乳腺癌结局的模拟模型,并整合了来自两个来源的数据:监测、流行病学和最终结果(SEER)数据库和乳腺癌监测联盟(BCSC)。我们不仅产生了无筛查和辅助治疗情况下乳腺癌生存的 ER 和 HER2 特异性估计值,还估计了 ER/HER2 状态下平均肿瘤倍增时间(TVDT)和平均乳腺检测阈值。
一般来说,我们发现 ER 阴性和 HER2 阳性的肿瘤与更具侵袭性的生长相关,TVDT 较低,通过乳腺摄影检测更困难,并且在无筛查和辅助治疗的情况下生存结果更差。我们的估计值已被用作模型分析的输入,这些分析由癌症干预和监测建模网络(CISNET)乳腺癌工作组开发,评估了通过 ER 和 HER2 状态进行的筛查和辅助治疗干预对人群结局的影响。此外,我们的估计值可以根据当代分子肿瘤特征重新评估乳腺癌发病率和死亡率的历史趋势。
我们的方法可以推广到乳腺癌以外的更复杂的分子谱。