Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
Med Decis Making. 2018 Apr;38(1_suppl):89S-98S. doi: 10.1177/0272989X17737508.
We present a Monte Carlo simulation model that reproduces US invasive breast cancer incidence and mortality trends from 1975 to 2010 as a function of screening and adjuvant treatment. This model was developed for multiple purposes, including to quantify the impact of screening and adjuvant therapy on past and current trends, predict future trends, and evaluate potential outcomes under hypothetical screening and treatment interventions. The model first generates the life histories of individual breast cancer patients by determining the patient's age, tumor size, estrogen receptor (ER) status, human epidermal growth factor 2 (HER2) status, SEER (Surveillance, Epidemiology, and End Results) historic stage, detection mode at time of detection, preclinical tumor course, and death age and cause of death (breast cancer v. other causes). The model incorporates common inputs used by the Cancer Intervention and Surveillance Modeling Network (CISNET), including the dissemination patterns for screening mammography, breast cancer survival in the absence of adjuvant therapy, dissemination and efficacy of treatment by ER and HER2 status, and death from causes other than breast cancer. In this article, predicted mortality outcomes are compared assuming proportional v. nonproportional hazards effects of treatment on breast cancer survival. We found that the proportional hazards treatment effects are sufficient for ER-negative disease. However, for ER-positive disease, the treatment effects appear to be higher during the early years following diagnosis and then diminish over time. Using nonproportional hazards effects for ER-positive cases, the predicted breast cancer mortality rates closely match the SEER mortality trends from 1975 to 2010, particularly after 1995. Our work indicates that population-level simulation modeling may have a broader role in assessing the time dependence of treatment effects.
我们提出了一个蒙特卡罗模拟模型,该模型可以根据筛查和辅助治疗来再现 1975 年至 2010 年美国浸润性乳腺癌发病率和死亡率的趋势。该模型的开发具有多种目的,包括量化筛查和辅助治疗对过去和当前趋势的影响、预测未来趋势以及评估在假设的筛查和治疗干预下的潜在结果。该模型首先通过确定患者的年龄、肿瘤大小、雌激素受体 (ER) 状态、人表皮生长因子 2 (HER2) 状态、SEER(监测、流行病学和结果)历史分期、检测时的检测模式、临床前肿瘤过程以及死亡年龄和死因(乳腺癌与其他原因),生成个体乳腺癌患者的生命史。该模型纳入了癌症干预和监测建模网络 (CISNET) 使用的常见输入,包括筛查乳房 X 线照片的传播模式、没有辅助治疗的乳腺癌生存情况、根据 ER 和 HER2 状态的治疗传播和效果以及除乳腺癌以外的其他原因导致的死亡。在本文中,假设治疗对乳腺癌生存的比例和非比例风险效应,对预测死亡率结果进行了比较。我们发现,比例风险治疗效果对于 ER 阴性疾病是足够的。然而,对于 ER 阳性疾病,治疗效果在诊断后的早期似乎更高,然后随着时间的推移而降低。对于 ER 阳性病例使用非比例风险效应,预测的乳腺癌死亡率与 1975 年至 2010 年 SEER 的死亡率趋势非常吻合,尤其是在 1995 年之后。我们的工作表明,基于人群的模拟模型可能在评估治疗效果的时间依赖性方面发挥更广泛的作用。