Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Med Decis Making. 2018 Apr;38(1_suppl):44S-53S. doi: 10.1177/0272989X17741634.
We present updated features to a model developed by Dana-Farber investigators within the Cancer Intervention and Surveillance Modeling Network (CISNET). The initial model was developed to evaluate the impact of mammography screening strategies.
This major update includes the incorporation of ductal carcinoma in situ (DCIS) as part of the natural history of breast cancer. The updated model allows DCIS in the pre-clinical state to regress to undetectable early-stage DCIS, or to transition to invasive breast cancer, or to clinical DCIS. We summarize model assumptions for DCIS natural history and model parameters. Another new development is the derivation of analytical expressions for overdiagnosis. Overdiagnosis refers to mammographic identification of breast cancer that would never have resulted in disease symptoms in the patient's remaining lifetime (i.e., lead time longer than residual survival time). This is an inevitable consequence of early detection. Our model uniquely assesses overdiagnosis using an analytical formulation. We derive the lead time distribution resulting from the early detection of invasive breast cancer and DCIS, and formulate the analytical expression for overdiagnosis.
This formulation was applied to assess overdiagnosis from mammography screening. Other model updates involve implementing common model input parameters with updated treatment dissemination and effectiveness, and improved mammography performance. Lastly, the model was expanded to incorporate subgroups by breast density and molecular subtypes.
The incorporation of DCIS and subgroups and the derivation of an overdiagnosis estimation procedure improve the model for evaluating mammography screening programs.
我们展示了由 Dana-Farber 研究人员在癌症干预和监测建模网络 (CISNET) 内开发的模型的更新功能。最初的模型是为了评估乳房 X 线筛查策略的影响而开发的。
本次重大更新包括将导管原位癌 (DCIS) 纳入乳腺癌的自然史。更新后的模型允许临床前状态的 DCIS 消退为无法检测到的早期 DCIS,或进展为浸润性乳腺癌,或进展为临床 DCIS。我们总结了 DCIS 自然史和模型参数的模型假设。另一个新发展是推导了过度诊断的分析表达式。过度诊断是指通过乳房 X 线摄影术发现的乳腺癌,在患者的剩余寿命内永远不会导致疾病症状(即,领先时间长于残留生存时间)。这是早期检测的必然结果。我们的模型使用分析公式独特地评估了过度诊断。我们推导出由浸润性乳腺癌和 DCIS 的早期检测引起的领先时间分布,并制定了过度诊断的分析表达式。
该公式用于评估乳房 X 线筛查的过度诊断。其他模型更新涉及实施具有更新的治疗传播和有效性的常见模型输入参数,并提高了乳房 X 线摄影术的性能。最后,该模型扩展到纳入乳房密度和分子亚型亚组。
DCIS 和亚组的纳入以及过度诊断估计程序的推导改进了用于评估乳房 X 线筛查计划的模型。