Suppr超能文献

丹娜-法伯癌症研究所 CISNET 乳腺癌筛查策略模型:更新。

The Dana-Farber CISNET Model for Breast Cancer Screening Strategies: An Update.

机构信息

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.

Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Med Decis Making. 2018 Apr;38(1_suppl):44S-53S. doi: 10.1177/0272989X17741634.

Abstract

BACKGROUND

We present updated features to a model developed by Dana-Farber investigators within the Cancer Intervention and Surveillance Modeling Network (CISNET). The initial model was developed to evaluate the impact of mammography screening strategies.

METHODS

This major update includes the incorporation of ductal carcinoma in situ (DCIS) as part of the natural history of breast cancer. The updated model allows DCIS in the pre-clinical state to regress to undetectable early-stage DCIS, or to transition to invasive breast cancer, or to clinical DCIS. We summarize model assumptions for DCIS natural history and model parameters. Another new development is the derivation of analytical expressions for overdiagnosis. Overdiagnosis refers to mammographic identification of breast cancer that would never have resulted in disease symptoms in the patient's remaining lifetime (i.e., lead time longer than residual survival time). This is an inevitable consequence of early detection. Our model uniquely assesses overdiagnosis using an analytical formulation. We derive the lead time distribution resulting from the early detection of invasive breast cancer and DCIS, and formulate the analytical expression for overdiagnosis.

RESULTS

This formulation was applied to assess overdiagnosis from mammography screening. Other model updates involve implementing common model input parameters with updated treatment dissemination and effectiveness, and improved mammography performance. Lastly, the model was expanded to incorporate subgroups by breast density and molecular subtypes.

CONCLUSIONS

The incorporation of DCIS and subgroups and the derivation of an overdiagnosis estimation procedure improve the model for evaluating mammography screening programs.

摘要

背景

我们展示了由 Dana-Farber 研究人员在癌症干预和监测建模网络 (CISNET) 内开发的模型的更新功能。最初的模型是为了评估乳房 X 线筛查策略的影响而开发的。

方法

本次重大更新包括将导管原位癌 (DCIS) 纳入乳腺癌的自然史。更新后的模型允许临床前状态的 DCIS 消退为无法检测到的早期 DCIS,或进展为浸润性乳腺癌,或进展为临床 DCIS。我们总结了 DCIS 自然史和模型参数的模型假设。另一个新发展是推导了过度诊断的分析表达式。过度诊断是指通过乳房 X 线摄影术发现的乳腺癌,在患者的剩余寿命内永远不会导致疾病症状(即,领先时间长于残留生存时间)。这是早期检测的必然结果。我们的模型使用分析公式独特地评估了过度诊断。我们推导出由浸润性乳腺癌和 DCIS 的早期检测引起的领先时间分布,并制定了过度诊断的分析表达式。

结果

该公式用于评估乳房 X 线筛查的过度诊断。其他模型更新涉及实施具有更新的治疗传播和有效性的常见模型输入参数,并提高了乳房 X 线摄影术的性能。最后,该模型扩展到纳入乳房密度和分子亚型亚组。

结论

DCIS 和亚组的纳入以及过度诊断估计程序的推导改进了用于评估乳房 X 线筛查计划的模型。

相似文献

1
The Dana-Farber CISNET Model for Breast Cancer Screening Strategies: An Update.
Med Decis Making. 2018 Apr;38(1_suppl):44S-53S. doi: 10.1177/0272989X17741634.
2
Modeling Ductal Carcinoma In Situ (DCIS): An Overview of CISNET Model Approaches.
Med Decis Making. 2018 Apr;38(1_suppl):126S-139S. doi: 10.1177/0272989X17729358.
3
Breast Cancer Screening in Denmark: A Cohort Study of Tumor Size and Overdiagnosis.
Ann Intern Med. 2017 Mar 7;166(5):313-323. doi: 10.7326/M16-0270. Epub 2017 Jan 10.
4
Modeling the natural history of ductal carcinoma in situ based on population data.
Breast Cancer Res. 2020 May 27;22(1):53. doi: 10.1186/s13058-020-01287-6.
5
Obligate Overdiagnosis Due to Mammographic Screening: A Direct Estimate for U.S. Women.
Radiology. 2018 May;287(2):391-397. doi: 10.1148/radiol.2017171622. Epub 2017 Dec 21.
7
Estimating the natural progression of non-invasive ductal carcinoma in situ breast cancer lesions using screening data.
J Med Screen. 2021 Sep;28(3):302-310. doi: 10.1177/0969141320945736. Epub 2020 Aug 27.
8
[Discrepancies and overdiagnosis in breast cancer organized screening. A "methodology" systematic review].
Rev Epidemiol Sante Publique. 2018 Nov;66(6):395-403. doi: 10.1016/j.respe.2018.08.007. Epub 2018 Oct 11.

引用本文的文献

1
2
Evaluation of the Slovenian Breast Cancer Screening Programme: Years of Life Gained and Avoided Deaths.
Cancers (Basel). 2025 Feb 22;17(5):742. doi: 10.3390/cancers17050742.
6
Analysis of Breast Cancer Mortality in the US-1975 to 2019.
JAMA. 2024 Jan 16;331(3):233-241. doi: 10.1001/jama.2023.25881.
7
Population simulation modeling of disparities in US breast cancer mortality.
J Natl Cancer Inst Monogr. 2023 Nov 8;2023(62):178-187. doi: 10.1093/jncimonographs/lgad023.
8
Patient Navigation Can Improve Breast Cancer Outcomes among African American Women in Chicago: Insights from a Modeling Study.
J Urban Health. 2022 Oct;99(5):813-828. doi: 10.1007/s11524-022-00669-9. Epub 2022 Aug 8.
9
Estimation of Breast Cancer Overdiagnosis in a U.S. Breast Screening Cohort.
Ann Intern Med. 2022 Apr;175(4):471-478. doi: 10.7326/M21-3577. Epub 2022 Mar 1.
10
Cancer screening simulation models: a state of the art review.
BMC Med Inform Decis Mak. 2021 Dec 20;21(1):359. doi: 10.1186/s12911-021-01713-5.

本文引用的文献

1
Common Model Inputs Used in CISNET Collaborative Breast Cancer Modeling.
Med Decis Making. 2018 Apr;38(1_suppl):9S-23S. doi: 10.1177/0272989X17700624.
2
Modeling Ductal Carcinoma In Situ (DCIS): An Overview of CISNET Model Approaches.
Med Decis Making. 2018 Apr;38(1_suppl):126S-139S. doi: 10.1177/0272989X17729358.
3
Collaborative Modeling of the Benefits and Harms Associated With Different U.S. Breast Cancer Screening Strategies.
Ann Intern Med. 2016 Feb 16;164(4):215-25. doi: 10.7326/M15-1536. Epub 2016 Jan 12.
4
Cancer statistics: Breast cancer in situ.
CA Cancer J Clin. 2015 Nov-Dec;65(6):481-95. doi: 10.3322/caac.21321. Epub 2015 Oct 2.
5
Rethinking the Standard for Ductal Carcinoma In Situ Treatment.
JAMA Oncol. 2015 Oct;1(7):881-3. doi: 10.1001/jamaoncol.2015.2607.
6
The contribution of mammography screening to breast cancer incidence trends in the United States: an updated age-period-cohort model.
Cancer Epidemiol Biomarkers Prev. 2015 Jun;24(6):905-12. doi: 10.1158/1055-9965.EPI-14-1286. Epub 2015 Mar 18.
7
Effects of screening and systemic adjuvant therapy on ER-specific US breast cancer mortality.
J Natl Cancer Inst. 2014 Sep 24;106(11). doi: 10.1093/jnci/dju289. Print 2014 Nov.
8
Benefits, harms, and costs for breast cancer screening after US implementation of digital mammography.
J Natl Cancer Inst. 2014 May 28;106(6):dju092. doi: 10.1093/jnci/dju092. Print 2014 Jun.
10
The changing incidence of in situ and invasive ductal and lobular breast carcinomas: United States, 1999-2004.
Cancer Epidemiol Biomarkers Prev. 2009 Jun;18(6):1763-9. doi: 10.1158/1055-9965.EPI-08-1082. Epub 2009 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验