Suppr超能文献

建模导管原位癌(DCIS):CISNET 模型方法概述。

Modeling Ductal Carcinoma In Situ (DCIS): An Overview of CISNET Model Approaches.

机构信息

Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Med Decis Making. 2018 Apr;38(1_suppl):126S-139S. doi: 10.1177/0272989X17729358.

Abstract

BACKGROUND

Ductal carcinoma in situ (DCIS) can be a precursor to invasive breast cancer. Since the advent of screening mammography in the 1980's, the incidence of DCIS has increased dramatically. The value of screen detection and treatment of DCIS, however, is a matter of controversy, as it is unclear the extent to which detection and treatment of DCIS prevents invasive disease and reduces breast cancer mortality. The aim of this paper is to provide an overview of existing Cancer Intervention and Surveillance Modelling Network (CISNET) modeling approaches for the natural history of DCIS, and to compare these to other modeling approaches reported in the literature.

DESIGN

Five of the 6 CISNET models currently include DCIS. Most models assume that some, but not all, lesions progress to invasive cancer. The natural history of DCIS cannot be directly observed and the CISNET models differ in their assumptions and in the data sources used to estimate the DCIS model parameters.

RESULTS

These model differences translate into variation in outcomes, such as the amount of overdiagnosis of DCIS, with estimates ranging from 34% to 72% for biennial screening from ages 50 to 74 y. The other models described in the literature also report a large range in outcomes, with progression rates varying from 20% to 91%.

LIMITATIONS

DCIS grade was not yet included in the CISNET models.

CONCLUSION

In the future, DCIS data by grade from active surveillance trials, the development of predictive markers of progression probability, and evidence from other screening modalities, such as tomosynthesis, may be used to inform and improve the models' representation of DCIS, and might lead to convergence of the model estimates. Until then, the CISNET model results consistently show a considerable amount of overdiagnosis of DCIS, supporting the safety and value of observational trials for low-risk DCIS.

摘要

背景

导管原位癌(DCIS)可能是浸润性乳腺癌的前身。自 20 世纪 80 年代筛查性乳房 X 光检查问世以来,DCIS 的发病率急剧上升。然而,筛查和治疗 DCIS 的价值存在争议,因为尚不清楚检测和治疗 DCIS 在多大程度上可以预防浸润性疾病和降低乳腺癌死亡率。本文旨在概述癌症干预和监测建模网络(CISNET)目前用于 DCIS 自然史的建模方法,并将这些方法与文献中报告的其他建模方法进行比较。

设计

CISNET 目前的 6 个模型中有 5 个包含 DCIS。大多数模型假设某些病变但不是全部病变会进展为浸润性癌。DCIS 的自然史无法直接观察,CISNET 模型在假设和用于估计 DCIS 模型参数的数据来源方面存在差异。

结果

这些模型差异导致结果的差异,例如 DCIS 的过度诊断量,从 50 岁到 74 岁每两年筛查一次的估计值范围为 34%至 72%。文献中描述的其他模型也报告了结果的很大差异,进展率从 20%到 91%不等。

局限性

CISNET 模型中尚未包含 DCIS 分级。

结论

未来,来自主动监测试验的 DCIS 分级数据、预测进展概率的预测标志物的发展以及其他筛查方式(如断层合成)的证据,可能会被用于告知和改进模型对 DCIS 的代表性,并可能导致模型估计的收敛。在那之前,CISNET 模型的结果一致显示出相当数量的 DCIS 过度诊断,支持低风险 DCIS 的观察性试验的安全性和价值。

相似文献

1
Modeling Ductal Carcinoma In Situ (DCIS): An Overview of CISNET Model Approaches.
Med Decis Making. 2018 Apr;38(1_suppl):126S-139S. doi: 10.1177/0272989X17729358.
2
The Dana-Farber CISNET Model for Breast Cancer Screening Strategies: An Update.
Med Decis Making. 2018 Apr;38(1_suppl):44S-53S. doi: 10.1177/0272989X17741634.
3
Modeling the natural history of ductal carcinoma in situ based on population data.
Breast Cancer Res. 2020 May 27;22(1):53. doi: 10.1186/s13058-020-01287-6.
5
Obligate Overdiagnosis Due to Mammographic Screening: A Direct Estimate for U.S. Women.
Radiology. 2018 May;287(2):391-397. doi: 10.1148/radiol.2017171622. Epub 2017 Dec 21.
6
Ductal Carcinoma In Situ - Quo Vadis?
Chirurgia (Bucur). 2021 Dec;116(5 Suppl):S5-S6.
8
Breast Cancer Screening in Denmark: A Cohort Study of Tumor Size and Overdiagnosis.
Ann Intern Med. 2017 Mar 7;166(5):313-323. doi: 10.7326/M16-0270. Epub 2017 Jan 10.
9
Characterizing the impact of 25 years of DCIS treatment.
Breast Cancer Res Treat. 2011 Aug;129(1):165-73. doi: 10.1007/s10549-011-1430-5. Epub 2011 Mar 9.
10
Comparing CISNET Breast Cancer Models Using the Maximum Clinical Incidence Reduction Methodology.
Med Decis Making. 2018 Apr;38(1_suppl):112S-125S. doi: 10.1177/0272989X17743244.

引用本文的文献

4
Cumulative 6-Year Risk of Screen-Detected Ductal Carcinoma In Situ by Screening Frequency.
JAMA Netw Open. 2023 Feb 1;6(2):e230166. doi: 10.1001/jamanetworkopen.2023.0166.
5
Reflecting on 20 years of breast cancer modeling in CISNET: Recommendations for future cancer systems modeling efforts.
PLoS Comput Biol. 2021 Jun 17;17(6):e1009020. doi: 10.1371/journal.pcbi.1009020. eCollection 2021 Jun.
6
Trade-Offs Between Harms and Benefits of Different Breast Cancer Screening Intervals Among Low-Risk Women.
J Natl Cancer Inst. 2021 Aug 2;113(8):1017-1026. doi: 10.1093/jnci/djaa218.
7
Data Needs in Opioid Systems Modeling: Challenges and Future Directions.
Am J Prev Med. 2021 Feb;60(2):e95-e105. doi: 10.1016/j.amepre.2020.08.017. Epub 2020 Dec 1.
8
Personalizing Breast Cancer Screening Based on Polygenic Risk and Family History.
J Natl Cancer Inst. 2021 Apr 6;113(4):434-442. doi: 10.1093/jnci/djaa127.
9
Modeling the natural history of ductal carcinoma in situ based on population data.
Breast Cancer Res. 2020 May 27;22(1):53. doi: 10.1186/s13058-020-01287-6.
10
Ductal Carcinoma In Situ Biology, Language, and Active Surveillance: A Survey of Breast Radiologists' Knowledge and Opinions.
J Am Coll Radiol. 2020 Oct;17(10):1252-1258. doi: 10.1016/j.jacr.2020.03.004. Epub 2020 Apr 9.

本文引用的文献

1
The University of Wisconsin Breast Cancer Epidemiology Simulation Model: An Update.
Med Decis Making. 2018 Apr;38(1_suppl):99S-111S. doi: 10.1177/0272989X17711927.
2
Common Model Inputs Used in CISNET Collaborative Breast Cancer Modeling.
Med Decis Making. 2018 Apr;38(1_suppl):9S-23S. doi: 10.1177/0272989X17700624.
3
Structure, Function, and Applications of the Georgetown-Einstein (GE) Breast Cancer Simulation Model.
Med Decis Making. 2018 Apr;38(1_suppl):66S-77S. doi: 10.1177/0272989X17698685.
4
An Example of Breast Cancer Regression on Imaging.
Radiol Case Rep. 2015 Nov 6;1(2):27-37. doi: 10.2484/rcr.v1i2.4. eCollection 2006.
5
Emerging trends in surgical and adjuvant radiation therapies among women diagnosed with ductal carcinoma in situ.
Cancer. 2016 Sep 15;122(18):2810-8. doi: 10.1002/cncr.30105. Epub 2016 May 31.
7
Epidemiologic evidence of slow growing, nonprogressive or regressive breast cancer: A systematic review.
Int J Cancer. 2016 Aug 1;139(3):554-73. doi: 10.1002/ijc.30105. Epub 2016 Apr 15.
8
Collaborative Modeling of the Benefits and Harms Associated With Different U.S. Breast Cancer Screening Strategies.
Ann Intern Med. 2016 Feb 16;164(4):215-25. doi: 10.7326/M15-1536. Epub 2016 Jan 12.
9
Outcomes of Active Surveillance for Ductal Carcinoma in Situ: A Computational Risk Analysis.
J Natl Cancer Inst. 2015 Dec 17;108(5). doi: 10.1093/jnci/djv372. Print 2016 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验