Suppr超能文献

比较 CISNET 乳腺癌模型使用最大临床发生率降低方法。

Comparing CISNET Breast Cancer Models Using the Maximum Clinical Incidence Reduction Methodology.

机构信息

Department of Public Health, Erasmus Medical Center, Rotterdam, the Netherlands.

Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA.

出版信息

Med Decis Making. 2018 Apr;38(1_suppl):112S-125S. doi: 10.1177/0272989X17743244.

Abstract

BACKGROUND

Collaborative modeling has been used to estimate the impact of potential cancer screening strategies worldwide. A necessary step in the interpretation of collaborative cancer screening model results is to understand how model structure and model assumptions influence cancer incidence and mortality predictions. In this study, we examined the relative contributions of the pre-clinical duration of breast cancer, the sensitivity of screening, and the improvement in prognosis associated with treatment of screen-detected cases to the breast cancer incidence and mortality predictions of 5 Cancer Intervention and Surveillance Modeling Network (CISNET) models.

METHODS

To tease out the impact of model structure and assumptions on model predictions, the Maximum Clinical Incidence Reduction (MCLIR) method compares changes in the number of breast cancers diagnosed due to clinical symptoms and cancer mortality between 4 simplified scenarios: 1) no-screening; 2) one-time perfect screening exam, which detects all existing cancers and perfect treatment (i.e., cure) of all screen-detected cancers; 3) one-time digital mammogram and perfect treatment of all screen-detected cancers; and 4) one-time digital mammogram and current guideline-concordant treatment of all screen-detected cancers.

RESULTS

The 5 models predicted a large range in maximum clinical incidence (19% to 71%) and in breast cancer mortality reduction (33% to 67%) from a one-time perfect screening test and perfect treatment. In this perfect scenario, the models with assumptions of tumor inception before it is first detectable by mammography predicted substantially higher incidence and mortality reductions than models with assumptions of tumor onset at the start of a cancer's screen-detectable phase. The range across models in breast cancer clinical incidence (11% to 24%) and mortality reduction (8% to 18%) from a one-time digital mammogram at age 62 y with observed sensitivity and current guideline-concordant treatment was considerably smaller than achievable under perfect conditions.

CONCLUSIONS

The timing of tumor inception and its effect on the length of the pre-clinical phase of breast cancer had a substantial impact on the grouping of models based on their predictions for clinical incidence and breast cancer mortality reduction. This key finding about the timing of tumor inception will be included in future CISNET breast analyses to enhance model transparency. The MCLIR approach should aid in the interpretation of variations in model results and could be adopted in other disease screening settings to enhance model transparency.

摘要

背景

协作建模已被用于估计全球潜在癌症筛查策略的影响。解释协作癌症筛查模型结果的必要步骤是了解模型结构和模型假设如何影响癌症发病率和死亡率预测。在这项研究中,我们研究了乳腺癌临床前持续时间、筛查敏感性以及与治疗相关的筛查发现病例预后改善对 5 个癌症干预和监测建模网络(CISNET)模型乳腺癌发病率和死亡率预测的相对贡献。

方法

为了梳理模型结构和假设对模型预测的影响,最大临床发病率降低(MCLIR)方法比较了 4 种简化方案下因临床症状而诊断的乳腺癌数量和癌症死亡率的变化:1)不筛查;2)一次性完美筛查检查,可检测到所有现有的癌症,并完美治疗(即治愈)所有筛查发现的癌症;3)一次性数字乳房 X 光摄影和完美治疗所有筛查发现的癌症;4)一次性数字乳房 X 光摄影和目前指南一致的所有筛查发现的癌症治疗。

结果

5 个模型预测了一次性完美筛查和完美治疗的最大临床发病率(19%至 71%)和乳腺癌死亡率降低(33%至 67%)的范围很大。在这种完美的情况下,假设肿瘤在首次通过乳房 X 光检查检测到之前就已经出现的模型预测的发病率和死亡率降低幅度要远远高于假设肿瘤在癌症可检测阶段开始时就出现的模型。在一次性数字乳房 X 光摄影在 62 岁时的敏感性和当前指南一致的治疗方案下,模型预测的乳腺癌临床发病率(11%至 24%)和死亡率降低(8%至 18%)范围要小得多。

结论

肿瘤起始时间及其对乳腺癌临床前阶段长度的影响对基于其对临床发病率和乳腺癌死亡率降低的预测对模型进行分组有重大影响。关于肿瘤起始时间的这一关键发现将被纳入未来 CISNET 乳腺癌分析中,以提高模型透明度。MCLIR 方法应有助于解释模型结果的变化,并可在其他疾病筛查环境中采用,以提高模型透明度。

相似文献

1
Comparing CISNET Breast Cancer Models Using the Maximum Clinical Incidence Reduction Methodology.
Med Decis Making. 2018 Apr;38(1_suppl):112S-125S. doi: 10.1177/0272989X17743244.
3
Common Model Inputs Used in CISNET Collaborative Breast Cancer Modeling.
Med Decis Making. 2018 Apr;38(1_suppl):9S-23S. doi: 10.1177/0272989X17700624.
5
Modeling Ductal Carcinoma In Situ (DCIS): An Overview of CISNET Model Approaches.
Med Decis Making. 2018 Apr;38(1_suppl):126S-139S. doi: 10.1177/0272989X17729358.
6
Mammography screening: A major issue in medicine.
Eur J Cancer. 2018 Feb;90:34-62. doi: 10.1016/j.ejca.2017.11.002. Epub 2017 Dec 20.
8
9
A Bayesian Simulation Model for Breast Cancer Screening, Incidence, Treatment, and Mortality.
Med Decis Making. 2018 Apr;38(1_suppl):78S-88S. doi: 10.1177/0272989X17714473. Epub 2017 Jun 19.

引用本文的文献

2
The Impact of Model Assumptions on Personalized Lung Cancer Screening Recommendations.
Med Decis Making. 2024 Jul;44(5):497-511. doi: 10.1177/0272989X241249182. Epub 2024 May 13.
3
Stage Shifting by Modifying the Determinants of Breast Cancer Stage at Diagnosis: A Simulation Study.
Cancers (Basel). 2024 Mar 19;16(6):1201. doi: 10.3390/cancers16061201.
6
Identifying Equitable Screening Mammography Strategies for Black Women in the United States Using Simulation Modeling.
Ann Intern Med. 2021 Dec;174(12):1637-1646. doi: 10.7326/M20-6506. Epub 2021 Oct 19.
10
Introduction to the Cancer Intervention and Surveillance Modeling Network (CISNET) Breast Cancer Models.
Med Decis Making. 2018 Apr;38(1_suppl):3S-8S. doi: 10.1177/0272989X17737507.

本文引用的文献

2
The University of Wisconsin Breast Cancer Epidemiology Simulation Model: An Update.
Med Decis Making. 2018 Apr;38(1_suppl):99S-111S. doi: 10.1177/0272989X17711927.
3
Common Model Inputs Used in CISNET Collaborative Breast Cancer Modeling.
Med Decis Making. 2018 Apr;38(1_suppl):9S-23S. doi: 10.1177/0272989X17700624.
4
Structure, Function, and Applications of the Georgetown-Einstein (GE) Breast Cancer Simulation Model.
Med Decis Making. 2018 Apr;38(1_suppl):66S-77S. doi: 10.1177/0272989X17698685.
7
Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement.
Ann Intern Med. 2016 Feb 16;164(4):279-96. doi: 10.7326/M15-2886. Epub 2016 Jan 12.
8
Collaborative Modeling of the Benefits and Harms Associated With Different U.S. Breast Cancer Screening Strategies.
Ann Intern Med. 2016 Feb 16;164(4):215-25. doi: 10.7326/M15-1536. Epub 2016 Jan 12.
10
The contribution of mammography screening to breast cancer incidence trends in the United States: an updated age-period-cohort model.
Cancer Epidemiol Biomarkers Prev. 2015 Jun;24(6):905-12. doi: 10.1158/1055-9965.EPI-14-1286. Epub 2015 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验