Plevritis Sylvia K, Sigal Bronislava M, Salzman Peter, Rosenberg Jarrett, Glynn Peter
Department of Radiology, School of Medicine, Stanford University, Stanford CA 94305, USA.
J Natl Cancer Inst Monogr. 2006(36):86-95. doi: 10.1093/jncimonographs/lgj012.
We present a simulation model that predicts U.S. breast cancer mortality trends from 1975 to 2000 and quantifies the impact of screening mammography and adjuvant therapy on these trends. This model was developed within the Cancer Intervention and Surveillance Network (CISNET) consortium.
A Monte Carlo simulation is developed to generate the life history of individual breast cancer patients by using CISNET base case inputs that describe the secular trend in breast cancer risk, dissemination patterns for screening mammography and adjuvant treatment, and death from causes other than breast cancer. The model generates the patient's age, tumor size and stage at detection, mode of detection, age at death, and cause of death (breast cancer versus other) based in part on assumptions on the natural history of breast cancer. Outcomes from multiple birth cohorts are summarized in terms of breast cancer mortality rates by calendar year.
Predicted breast cancer mortality rates follow the general shape of U.S. breast cancer mortality rates from 1975 to 1995 but level off after 1995 as opposed to following an observed decline. Sensitivity analysis revealed that the impact adjuvant treatment may be underestimated given the lack of data on temporal variation in treatment efficacy.
We developed a simulation model that uses CISNET base case inputs and closely, but not exactly, reproduces U.S. breast cancer mortality rates. Screening mammography and adjuvant therapy are shown to have both contributed to a decline in U.S. breast cancer mortality.
我们提出了一个模拟模型,该模型可预测1975年至2000年美国乳腺癌死亡率趋势,并量化乳腺钼靶筛查和辅助治疗对这些趋势的影响。此模型是在癌症干预与监测网络(CISNET)联盟内开发的。
通过使用CISNET基础病例输入数据开发了一个蒙特卡洛模拟,以生成个体乳腺癌患者的生命历程,这些输入数据描述了乳腺癌风险的长期趋势、乳腺钼靶筛查和辅助治疗的传播模式以及非乳腺癌原因导致的死亡情况。该模型部分基于对乳腺癌自然史的假设,生成患者的年龄、检测时的肿瘤大小和分期、检测方式、死亡年龄以及死亡原因(乳腺癌与其他原因)。多个出生队列的结果按历年的乳腺癌死亡率进行汇总。
预测的乳腺癌死亡率呈现出1975年至1995年美国乳腺癌死亡率的总体趋势,但在1995年之后趋于平稳,而不是像观察到的那样下降。敏感性分析表明,鉴于缺乏治疗效果随时间变化的数据,辅助治疗的影响可能被低估了。
我们开发了一个模拟模型,该模型使用CISNET基础病例输入数据,能够密切但并非完全准确地再现美国乳腺癌死亡率。乳腺钼靶筛查和辅助治疗均被证明对美国乳腺癌死亡率的下降有贡献。