Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Nat Chem. 2018 Apr;10(4):449-455. doi: 10.1038/s41557-018-0014-y. Epub 2018 Mar 19.
Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H-C=C-H double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.
振子耦合是分子系统中能量有效传递的关键,也是大多数涉及生物过程中量子效应的机制的关键组成部分。尽管越来越多的证据表明电子态的相干耦合是由振动运动介导的,但尚不清楚与振动相干性相关的性质(如相位和原子运动的耦合)如何以及在何种程度上影响在非相干照明下光诱导过程的效率。在这里,我们表明,视觉色素视紫红质中 11-顺式视黄醛的 H-C=C-H 双键氘化会显著且出人意料地改变光异构化产率,同时引起超快异构化动力学的较小变化,这些变化可归因于已知的同位素效应。将这些结果与非绝热分子动力学模拟相结合,揭示了一种与振动相位相关的同位素效应,我们认为这是振子相干光化学过程的固有属性。