Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands.
Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525, GA, Nijmegen, The Netherlands.
J Inherit Metab Dis. 2018 May;41(3):367-377. doi: 10.1007/s10545-018-0161-8. Epub 2018 Mar 19.
The identification of molecular biomarkers is critical for diagnosing and treating patients and for establishing a fundamental understanding of the pathophysiology and underlying biochemistry of inborn errors of metabolism. Currently, liquid chromatography/high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy are the principle methods used for biomarker research and for structural elucidation of small molecules in patient body fluids. While both are powerful techniques, several limitations exist that often make the identification of unknown compounds challenging. Here, we describe how infrared ion spectroscopy has the potential to be a valuable orthogonal technique that provides highly-specific molecular structure information while maintaining ultra-high sensitivity. Here, we characterize and distinguish two well-known biomarkers of inborn errors of metabolism, glutaric acid for glutaric aciduria and ethylmalonic acid for short-chain acyl-CoA dehydrogenase deficiency, using infrared ion spectroscopy. In contrast to tandem mass spectra, in which ion fragments can hardly be predicted, we show that the prediction of an IR spectrum allows reference-free identification in the case that standard compounds are either commercially or synthetically unavailable. Finally, we illustrate how functional group information can be obtained from an IR spectrum for an unknown and how this is valuable information to, for example, narrow down a list of candidate structures resulting from a database query. Early diagnosis in inborn errors of metabolism is crucial for enabling treatment and depends on the identification of biomarkers specific for the disorder. Infrared ion spectroscopy has the potential to play a pivotal role in the identification of challenging biomarkers.
鉴定分子生物标志物对于诊断和治疗患者以及对于深入了解代谢性遗传病的病理生理学和潜在生物化学基础至关重要。目前,液相色谱/高分辨质谱和核磁共振波谱是用于生物标志物研究以及鉴定患者体液中小分子结构的主要方法。虽然这两种方法都很强大,但它们存在一些局限性,常常使未知化合物的鉴定具有挑战性。在这里,我们描述了红外离子光谱如何有可能成为一种有价值的正交技术,它提供高度特异性的分子结构信息,同时保持超高灵敏度。在这里,我们使用红外离子光谱对两种已知的代谢性遗传病生物标志物进行了表征和区分,即戊二酸血症中的戊二酸和短链酰基辅酶 A 脱氢酶缺乏症中的乙基丙二酸。与串联质谱不同,在串联质谱中,离子碎片几乎无法预测,我们表明,在标准化合物既无法商业获得也无法合成的情况下,对 IR 光谱的预测允许进行无参考识别。最后,我们说明了如何从未知物的 IR 光谱中获取官能团信息,以及该信息如何为缩小数据库查询得到的候选结构列表等提供有价值的信息。代谢性遗传病的早期诊断对于进行治疗至关重要,这取决于鉴定出该疾病特异性的生物标志物。红外离子光谱有可能在鉴定具有挑战性的生物标志物方面发挥关键作用。