Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
Graduate Institute of Applied Science Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
Nanoscale. 2018 Mar 29;10(13):6125-6138. doi: 10.1039/C7NR09058G.
The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.
具有高容量前景的无阳极锂金属电池的实际应用受到枝晶形成和低库仑效率的阻碍。最值得注意的是,这些挑战源于裸铜电极上锂电镀不均匀和 SEI 层不稳定的形成。在此,我们揭示了在包含 1 M LiTFSI、DME/DOL(1/1,v/v)和 2 wt% LiNO3 的电解液中,使用涂覆有聚氧化乙烯(PEO)薄膜的铜电极实现了锂的均匀沉积和有效抑制枝晶形成。更重要的是,PEO 薄膜涂层通过容纳锂和调节锂与电解质的不可避免的反应,促进了薄而坚固的 SEI 层膜的形成。改性电极在 0.5 mA cm-2 的电流密度下,经过 200 次循环后,具有稳定的锂循环,平均库仑效率约为 100%,且电压滞后(约 30 mV)低。此外,我们通过将其与 LiFePO4 阴极集成到全电池配置(Cu@PEO/LiFePO4)中来实验测试无阳极电池。新电池在 0.2C 的倍率下,200 次循环的平均库仑效率为 98.6%,容量保持率为 30%,表现出稳定的循环性能。这些循环寿命和容量保持率的显著提高归因于 PEO 薄膜涂层的协同作用、高电极-电解质界面相容性、来自 1,3-二氧戊环还原的稳定的极性低聚物形成以及硝酸锂还原生成稳定 SEI 的亚硝酸盐和氮化物。我们的研究结果为通过用 PEO 修饰铜阳极来实现无阳极电池开辟了一条新途径,以实现更具挑战性但更安全的界面化学和控制枝晶形成。