We Chaohui, Deng Jinxiang, Xing Jianxiong, Wang Zihao, Song Zhicui, Wang Donghuan, Jiang Jicheng, Wang Xin, Zhou Aijun, Zou Wei, Li Jingze
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China.
Nanoscale Adv. 2023 Aug 4;5(18):5094-5101. doi: 10.1039/d3na00248a. eCollection 2023 Sep 12.
Lithium (Li) metal is considered as an ideal negative electrode material for next-generation secondary batteries; however, the hideous dendrite growth and parasitic reactions hinder the practical applications of Li metal batteries. Herein, a hybrid polymer film composed of polyvinyl alcohol (PVA) and polyacrylic acid (PAA) is adopted as an artificial protective layer to inhibit the dendritic formation and side reactions in Li metal anodes. PVA with large quantities of polar functional groups can induce even distribution of Li ions (Li). Alternatively, PAA can react with Li metal to form highly elastic and ionic conducting lithium polyacrylic acid (LiPAA), thereby enabling tight contact and flexible self-adaption with Li metal anodes. Therefore, such a rationally designed functional composite layer, with good binding ability and relatively high Li conductivity, as well as excellent capability of homogenizing Li flow, accordingly enables Li metal anodes to reveal dendrite-free plating/stripping behaviours and minimum volume variation. As a result, the PVA-PAA modified Li metal anode delivered stable cycling for 700 and 250 h, respectively, at current densities of 1 and 3 mA cm under an areal capacity of 1 mA h cm, in a carbonate ester-based electrolyte without any additive, exhibiting boosted cycling and rate performances. The Li anode with a functional PVA-PAA hybrid interlayer can maintain the dense and smooth texture without dendrite formation after long cycles. The full cell of Li|LiFeO with our modified Li anode and a cathode with a high areal capacity of 2.45 mA h cm delivers, change to achieved a long-term lifespan of 180 cycles at 1.0 C, with a capacity retention of 96.7%. This work demonstrates a simple and effective strategy of designing multi-functional artificial protective layers, targeting dendrite-free Li anodes.
锂(Li)金属被认为是下一代二次电池的理想负极材料;然而,可怕的枝晶生长和寄生反应阻碍了锂金属电池的实际应用。在此,采用由聚乙烯醇(PVA)和聚丙烯酸(PAA)组成的混合聚合物膜作为人工保护层,以抑制锂金属阳极中的枝晶形成和副反应。具有大量极性官能团的PVA可以诱导锂离子(Li)均匀分布。另外,PAA可以与锂金属反应形成高弹性且离子导电的聚丙烯酸锂(LiPAA),从而实现与锂金属阳极的紧密接触和灵活自适应。因此,这种合理设计的功能复合层具有良好的结合能力和相对较高的锂电导率,以及出色的锂流均匀化能力,相应地使锂金属阳极呈现无枝晶的电镀/剥离行为和最小的体积变化。结果,在无任何添加剂的碳酸酯基电解质中,PVA-PAA修饰的锂金属阳极在面积容量为1 mA h cm、电流密度为1和3 mA cm时分别稳定循环700和250 h,展现出增强的循环和倍率性能。具有功能性PVA-PAA混合中间层的锂阳极在长循环后可以保持致密且光滑的质地,不会形成枝晶。采用我们修饰的锂阳极和面积容量为2.45 mA h cm的高面积容量阴极的Li|LiFeO全电池在1.0 C下实现了180次循环的长期寿命,容量保持率为96.7%。这项工作展示了一种针对无枝晶锂阳极设计多功能人工保护层的简单有效策略。