Suppr超能文献

通过具有自修复功能的单离子导电PAMPS-PBA共聚物界面提升无阳极电池性能。

Enhancing Anode-Free Battery Performance with Self-Healing Single-Ion Conducting PAMPS--PBA Copolymer Interfaces.

作者信息

Chung Chia-Huan, Wu Liang-Ting, Sentosa Daniel Muara, Ho Chun-Chieh, Chi Po-Wei, Hsu Wen-Chia, Yeh Kuo-Wei, Chang Chung-Chieh, Hwang Bing Joe, Wu Maw-Kuen, Jiang Jyh-Chiang, Hu Chien-Chieh, Chiu Yu-Cheng

机构信息

Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43 Keelung Road, Sec 4, Taipei 10607, Taiwan.

Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road, Sec 4, Taipei 10607, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2025 Apr 23;17(16):23872-23884. doi: 10.1021/acsami.4c22501. Epub 2025 Mar 18.

Abstract

The design of anode-free batteries presents an attractive approach to the lithium metal battery. However, challenges such as uneven plating of lithium and poor Coulombic efficiency limit their commercially viable applications. In response to these challenges, this study introduces poly{(2-acrylamido-2-methylpropanesulfonic acid)--(butyl acrylate)} (PAMPS--PBA), an artificial interface engineered to enhance the cyclic stability of batteries by fortifying the solid electrolyte interphase (SEI) and enabling self-healing and single-ion conductivity. Synthesis outcomes, validated by FTIR and H NMR spectra, demonstrate successful production of PAMPS--PBA. Experimental results, including analyses of surface morphology, tensile strength, and Li plating/stripping tests, demonstrate the effectiveness of PAMPS--PBA in preventing dendrite formation and achieving >99% Coulombic efficiency. SEM analysis reveals better surface morphology and minimal lithium deposits for PAMPS--PBA compared with bare copper and other alternative interfaces. XPS analysis confirms the self-healing and single-ion conducting attributes of PAMPS--PBA postcycling. Density functional theory calculations elucidates the interface's behavior, confirming a pathway for Li-ion movement facilitated by the sulfonic acid group. Ab initio molecular dynamics simulations highlight the potential for SEI formation, shedding light on the influence of LiTFSI on interface protection. Anode-free full cell testing demonstrates PAMPS--PBA enhancement in stability over bare copper, with 1.6 times capacity retention over 50 cycles, primarily attributed to self-healing and dendrite suppression. Nonetheless, observed capacity fading after prolonged cycling suggests the optimization of Li salt choice. Overall, PAMPS--PBA presents a promising solution for enhancing battery performance through advanced interface engineering.

摘要

无阳极电池的设计为锂金属电池提供了一种有吸引力的方法。然而,诸如锂镀层不均匀和库仑效率低等挑战限制了它们在商业上的可行应用。针对这些挑战,本研究引入了聚{(2-丙烯酰胺基-2-甲基丙烷磺酸)--(丙烯酸丁酯)}(PAMPS--PBA),这是一种人工界面,通过强化固体电解质界面(SEI)以及实现自修复和单离子传导性来增强电池的循环稳定性。经傅里叶变换红外光谱(FTIR)和核磁共振氢谱(H NMR)光谱验证的合成结果表明成功制备了PAMPS--PBA。包括表面形态分析、拉伸强度分析和锂电镀/剥离测试在内的实验结果表明,PAMPS--PBA在防止枝晶形成和实现>99%的库仑效率方面是有效的。扫描电子显微镜(SEM)分析显示,与裸铜和其他替代界面相比,PAMPS--PBA具有更好的表面形态和最少的锂沉积物。X射线光电子能谱(XPS)分析证实了循环后PAMPS--PBA的自修复和单离子传导特性。密度泛函理论计算阐明了该界面的行为,证实了磺酸基团促进锂离子移动的途径。从头算分子动力学模拟突出了SEI形成的潜力,揭示了双三氟甲烷磺酰亚胺锂(LiTFSI)对界面保护的影响。无阳极全电池测试表明,PAMPS--PBA比裸铜具有更高的稳定性,在50次循环中容量保持率为1.6倍,这主要归因于自修复和枝晶抑制。尽管如此,长时间循环后观察到的容量衰减表明需要优化锂盐的选择。总体而言,PAMPS--PBA通过先进的界面工程为提高电池性能提供了一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb42/12022949/0c0da5256f16/am4c22501_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验