a Department of Psychology , University of Houston.
Multivariate Behav Res. 2018 May-Jun;53(3):315-334. doi: 10.1080/00273171.2018.1443787. Epub 2018 Mar 20.
A general latent variable modeling framework called n-Level Structural Equations Modeling (NL-SEM) for dependent data-structures is introduced. NL-SEM is applicable to a wide range of complex multilevel data-structures (e.g., cross-classified, switching membership, etc.). Reciprocal dyadic ratings obtained in round-robin design involve complex set of dependencies that cannot be modeled within Multilevel Modeling (MLM) or Structural Equations Modeling (SEM) frameworks. The Social Relations Model (SRM) for round robin data is used as an example to illustrate key aspects of the NL-SEM framework. NL-SEM introduces novel constructs such as 'virtual levels' that allows a natural specification of latent variable SRMs. An empirical application of an explanatory SRM for personality using xxM, a software package implementing NL-SEM is presented. Results show that person perceptions are an integral aspect of personality. Methodological implications of NL-SEM for the analyses of an emerging class of contextual- and relational-SEMs are discussed.
介绍了一种称为 n 级结构方程建模(NL-SEM)的用于相关数据结构的通用潜在变量建模框架。NL-SEM 适用于广泛的复杂多层次数据结构(例如交叉分类、切换成员等)。轮次设计中获得的互惠对偶评级涉及到多层次建模(MLM)或结构方程建模(SEM)框架内无法建模的复杂依赖关系。轮次数据的社会关系模型(SRM)用作示例来说明 NL-SEM 框架的关键方面。NL-SEM 引入了新的结构,例如“虚拟级别”,允许自然指定潜在变量 SRM。使用实现 NL-SEM 的软件包 xxM 对个性进行解释性 SRM 的实证应用进行了介绍。结果表明,人员感知是个性的一个组成部分。讨论了 NL-SEM 对分析新兴的情境和关系-SEM 类别的方法学意义。