Suppr超能文献

虚拟层级和角色模型:交互评分数据的 N 层级结构方程模型。

Virtual Levels and Role Models: N-Level Structural Equations Model of Reciprocal Ratings Data.

机构信息

a Department of Psychology , University of Houston.

出版信息

Multivariate Behav Res. 2018 May-Jun;53(3):315-334. doi: 10.1080/00273171.2018.1443787. Epub 2018 Mar 20.

Abstract

A general latent variable modeling framework called n-Level Structural Equations Modeling (NL-SEM) for dependent data-structures is introduced. NL-SEM is applicable to a wide range of complex multilevel data-structures (e.g., cross-classified, switching membership, etc.). Reciprocal dyadic ratings obtained in round-robin design involve complex set of dependencies that cannot be modeled within Multilevel Modeling (MLM) or Structural Equations Modeling (SEM) frameworks. The Social Relations Model (SRM) for round robin data is used as an example to illustrate key aspects of the NL-SEM framework. NL-SEM introduces novel constructs such as 'virtual levels' that allows a natural specification of latent variable SRMs. An empirical application of an explanatory SRM for personality using xxM, a software package implementing NL-SEM is presented. Results show that person perceptions are an integral aspect of personality. Methodological implications of NL-SEM for the analyses of an emerging class of contextual- and relational-SEMs are discussed.

摘要

介绍了一种称为 n 级结构方程建模(NL-SEM)的用于相关数据结构的通用潜在变量建模框架。NL-SEM 适用于广泛的复杂多层次数据结构(例如交叉分类、切换成员等)。轮次设计中获得的互惠对偶评级涉及到多层次建模(MLM)或结构方程建模(SEM)框架内无法建模的复杂依赖关系。轮次数据的社会关系模型(SRM)用作示例来说明 NL-SEM 框架的关键方面。NL-SEM 引入了新的结构,例如“虚拟级别”,允许自然指定潜在变量 SRM。使用实现 NL-SEM 的软件包 xxM 对个性进行解释性 SRM 的实证应用进行了介绍。结果表明,人员感知是个性的一个组成部分。讨论了 NL-SEM 对分析新兴的情境和关系-SEM 类别的方法学意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验