a University of California, Merced.
b University of Notre Dame.
Multivariate Behav Res. 2018 Sep-Oct;53(5):714-730. doi: 10.1080/00273171.2018.1479629. Epub 2018 Nov 26.
Psychologists are interested in whether friends and couples share similar personalities or not. However, no statistical models are readily available to test the association between personalities and social relations in the literature. In this study, we develop a statistical model for analyzing social network data with the latent personality traits as covariates. Because the model contains a measurement model for the latent traits and a structural model for the relationship between the network and latent traits, we discuss it under the general framework of structural equation modeling (SEM). In our model, the structural relation between the latent variable(s) and the outcome variable is no longer linear or generalized linear. To obtain model parameter estimates, we propose to use a two-stage maximum likelihood (ML) procedure. This modeling framework is evaluated through a simulation study under representative conditions that would be found in social network data. Its usefulness is then demonstrated through an empirical application to a college friendship network.
心理学家感兴趣的是朋友和情侣是否具有相似的个性。然而,文献中并没有现成的统计模型来检验个性和社会关系之间的关联。在这项研究中,我们开发了一种统计模型,用于分析具有潜在个性特征作为协变量的社交网络数据。由于该模型包含了潜在特征的测量模型和网络与潜在特征之间关系的结构模型,因此我们在结构方程建模 (SEM) 的一般框架下对其进行了讨论。在我们的模型中,潜在变量与结果变量之间的结构关系不再是线性或广义线性的。为了获得模型参数估计,我们建议使用两阶段最大似然 (ML) 程序。该建模框架通过在具有代表性的条件下进行模拟研究进行评估,这些条件在社交网络数据中很常见。然后,通过对大学生友谊网络的实证应用来说明其有用性。