Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Molecular and Cell Biology, University of California @ Davis, CA 95616, USA.
Curr Biol. 2018 Mar 19;28(6):R278-R292. doi: 10.1016/j.cub.2018.01.085.
Cells from all three domains of life on Earth utilize motile macromolecular devices that protrude from the cell surface to generate forces that allow them to swim through fluid media. Research carried out on archaea during the past decade or so has led to the recognition that, despite their common function, the motility devices of the three domains display fundamental differences in their properties and ancestry, reflecting a striking example of convergent evolution. Thus, the flagella of bacteria and the archaella of archaea employ rotary filaments that assemble from distinct subunits that do not share a common ancestor and generate torque using energy derived from distinct fuel sources, namely chemiosmotic ion gradients and FlaI motor-catalyzed ATP hydrolysis, respectively. The cilia of eukaryotes, however, assemble via kinesin-2-driven intraflagellar transport and utilize microtubules and ATP-hydrolyzing dynein motors to beat in a variety of waveforms via a sliding filament mechanism. Here, with reference to current structural and mechanistic information about these organelles, we briefly compare the evolutionary origins, assembly and tactic motility of archaella, flagella and cilia.
地球上所有三个生命领域的细胞都利用从细胞表面伸出的可移动的大分子设备来产生力,使它们能够在流体介质中游动。在过去十年左右的时间里,对古菌的研究导致人们认识到,尽管它们具有共同的功能,但这三个领域的运动设备在性质和起源上存在根本差异,反映了趋同进化的一个显著例子。因此,细菌的鞭毛和古菌的菌毛都采用了由不同亚基组装而成的旋转细丝,这些亚基没有共同的祖先,它们利用来自不同燃料来源的能量产生扭矩,分别是化学渗透离子梯度和 FlaI 马达催化的 ATP 水解。然而,真核生物的纤毛通过动力蛋白-2 驱动的鞭毛内运输组装,并利用微管和 ATP 水解的动力蛋白通过滑动丝机制以各种波形进行拍打。在这里,我们参考了这些细胞器的当前结构和机制信息,简要比较了菌毛、鞭毛和纤毛的进化起源、组装和策略运动。