Suppr超能文献

真核生物纤毛和鞭毛作为运动和感觉细胞器的进化。

The evolution of eukaryotic cilia and flagella as motile and sensory organelles.

作者信息

Mitchell David R

机构信息

Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, New York 13210, USA.

出版信息

Adv Exp Med Biol. 2007;607:130-40. doi: 10.1007/978-0-387-74021-8_11.

Abstract

Eukaryotic cilia and flagella are motile organelles built on a scaffold of doublet microtubules and powered by dynein ATPase motors. Some thirty years ago, two competing views were presented to explain how the complex machinery of these motile organelles had evolved. Overwhelming evidence now refutes the hypothesis that they are the modified remnants of symbiotic spirochaete-like prokaryotes, and supports the hypothesis that they arose from a simpler cytoplasmic microtubule-based intracellular transport system. However, because intermediate stages in flagellar evolution have not been found in living eukaryotes, a clear understanding of their early evolution has been elusive. Recent progress in understanding phylogenetic relationships among present day eukaryotes and in sequence analysis of flagellar proteins have begun to provide a clearer picture of the origins of doublet and triplet microtubules, flagellar dynein motors, and the 9+2 microtubule architecture common to these organelles. We summarize evidence that the last common ancestor of all eukaryotic organisms possessed a 9+2 flagellum that was used for gliding motility along surfaces, beating motility to generate fluid flow, and localized distribution of sensory receptors, and trace possible earlier stages in the evolution of these characteristics.

摘要

真核生物的纤毛和鞭毛是基于双联微管支架构建的运动细胞器,由动力蛋白ATP酶驱动。大约三十年前,出现了两种相互竞争的观点来解释这些运动细胞器的复杂机制是如何进化的。现在,大量证据反驳了它们是共生螺旋体样原核生物的修饰残余物这一假说,并支持它们起源于基于更简单的细胞质微管的细胞内运输系统这一假说。然而,由于在现存真核生物中尚未发现鞭毛进化的中间阶段,对其早期进化的清晰理解一直难以捉摸。最近在理解当今真核生物之间的系统发育关系以及鞭毛蛋白序列分析方面取得的进展,已开始更清晰地呈现双联和三联微管、鞭毛动力蛋白以及这些细胞器共有的9+2微管结构的起源。我们总结了证据,表明所有真核生物的最后一个共同祖先拥有一个9+2鞭毛,该鞭毛用于沿表面滑行运动、拍打运动以产生流体流动以及感觉受体的局部分布,并追溯了这些特征进化过程中可能更早的阶段。

相似文献

1
The evolution of eukaryotic cilia and flagella as motile and sensory organelles.
Adv Exp Med Biol. 2007;607:130-40. doi: 10.1007/978-0-387-74021-8_11.
3
Speculations on the evolution of 9+2 organelles and the role of central pair microtubules.
Biol Cell. 2004 Dec;96(9):691-6. doi: 10.1016/j.biolcel.2004.07.004.
4
How signals of calcium ions initiate the beats of cilia and flagella.
Biosystems. 2019 Aug;182:42-51. doi: 10.1016/j.biosystems.2019.103981. Epub 2019 Jun 13.
5
6
Undulipodia, flagella and cilia.
Biosystems. 1980;12(1-2):105-8. doi: 10.1016/0303-2647(80)90041-6.
7
Assembly, Functions and Evolution of Archaella, Flagella and Cilia.
Curr Biol. 2018 Mar 19;28(6):R278-R292. doi: 10.1016/j.cub.2018.01.085.
9
Tubulin-dynein system in flagellar and ciliary movement.
Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(8):397-415. doi: 10.2183/pjab.88.397.
10

引用本文的文献

1
Advection versus diffusion in brain ventricular transport.
Fluids Barriers CNS. 2025 Aug 13;22(1):82. doi: 10.1186/s12987-025-00692-3.
3
Evolutionary trajectory for nuclear functions of ciliary transport complex proteins.
Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0000624. doi: 10.1128/mmbr.00006-24. Epub 2024 Jul 12.
4
Actin cytoskeletal regulation of ciliogenesis in development and disease.
Dev Dyn. 2024 Dec;253(12):1076-1093. doi: 10.1002/dvdy.724. Epub 2024 Jul 3.
5
Autosomal Dominant Polycystic Kidney Disease: Extrarenal Involvement.
Int J Mol Sci. 2024 Feb 22;25(5):2554. doi: 10.3390/ijms25052554.
6
Role of the microtubules in the electrical activity of the primary cilium of renal epithelial cells.
Front Mol Biosci. 2023 Nov 22;10:1214532. doi: 10.3389/fmolb.2023.1214532. eCollection 2023.
7
The ciliary lumen accommodates passive diffusion and vesicle-assisted trafficking in cytoplasm-ciliary transport.
Mol Biol Cell. 2023 May 15;34(6):ar59. doi: 10.1091/mbc.E22-10-0452. Epub 2023 Mar 1.
9
Flagellin Improves the Immune Response of an Infectious Bursal Disease Virus (IBDV) Subunit Vaccine.
Vaccines (Basel). 2022 Oct 22;10(11):1780. doi: 10.3390/vaccines10111780.
10
The premetazoan ancestry of the synaptic toolkit and appearance of first neurons.
Essays Biochem. 2022 Dec 8;66(6):781-795. doi: 10.1042/EBC20220042.

本文引用的文献

1
ATP production in Chlamydomonas reinhardtii flagella by glycolytic enzymes.
Mol Biol Cell. 2005 Oct;16(10):4509-18. doi: 10.1091/mbc.e05-04-0347. Epub 2005 Jul 19.
2
The genome of the African trypanosome Trypanosoma brucei.
Science. 2005 Jul 15;309(5733):416-22. doi: 10.1126/science.1112642.
3
Proteomic analysis of a eukaryotic cilium.
J Cell Biol. 2005 Jul 4;170(1):103-13. doi: 10.1083/jcb.200504008.
4
The new bacterial cell biology: moving parts and subcellular architecture.
Cell. 2005 Mar 11;120(5):577-86. doi: 10.1016/j.cell.2005.02.026.
5
Regulation of flagellar dynein activity by a central pair kinesin.
Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17398-403. doi: 10.1073/pnas.0406817101. Epub 2004 Nov 30.
6
Speculations on the evolution of 9+2 organelles and the role of central pair microtubules.
Biol Cell. 2004 Dec;96(9):691-6. doi: 10.1016/j.biolcel.2004.07.004.
8
The real 'kingdoms' of eukaryotes.
Curr Biol. 2004 Sep 7;14(17):R693-6. doi: 10.1016/j.cub.2004.08.038.
9
Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella.
J Cell Biol. 2004 Aug 30;166(5):709-15. doi: 10.1083/jcb.200406148.
10
The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes.
Proc Natl Acad Sci U S A. 2004 May 25;101(21):8066-71. doi: 10.1073/pnas.0308602101. Epub 2004 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验