Suppr超能文献

隐性信号的演变。

The Evolution of Covert Signaling.

机构信息

Cognitive and Information Sciences, University of California, Merced, Merced, CA, USA.

Unaffiliated, Sacramento, CA, USA.

出版信息

Sci Rep. 2018 Mar 20;8(1):4905. doi: 10.1038/s41598-018-22926-1.

Abstract

Human sociality depends upon the benefits of mutual aid and extensive communication. However, diverse norms and preferences complicate mutual aid, and ambiguity in meaning hinders communication. Here we demonstrate that these two problems can work together to enhance cooperation through the strategic use of deliberately ambiguous signals: covert signaling. Covert signaling is the transmission of information that is accurately received by its intended audience but obscured when perceived by others. Such signals may allow coordination and enhanced cooperation while also avoiding the alienation or hostile reactions of individuals with different preferences. Although the empirical literature has identified potential mechanisms of covert signaling, such as encryption in humor, there is to date no formal theory of its dynamics. We introduce a novel mathematical model to assess when a covert signaling strategy will evolve, as well as how receiver attitudes coevolve with covert signals. Covert signaling plausibly serves an important function in facilitating within-group cooperative assortment by allowing individuals to pair up with similar group members when possible and to get along with dissimilar ones when necessary. This mechanism has broad implications for theories of signaling and cooperation, humor, social identity, political psychology, and the evolution of human cultural complexity.

摘要

人类的社会性依赖于互助和广泛交流的好处。然而,多样化的规范和偏好使互助变得复杂,而意义的模糊性则阻碍了交流。在这里,我们证明这两个问题可以通过故意使用模糊信号的策略——隐性信号共同增强合作。隐性信号是指信息的传递,它被预期的受众准确接收,但被其他人感知时则被掩盖。这种信号可以在避免具有不同偏好的个体疏远或产生敌对反应的同时,实现协调和增强合作。尽管实证文献已经确定了隐性信号的潜在机制,例如幽默中的加密,但目前还没有关于其动态的正式理论。我们引入了一种新的数学模型来评估隐性信号策略何时会进化,以及接收者的态度如何与隐性信号共同进化。隐性信号通过允许个体在可能的情况下与相似的群体成员配对,并在必要时与不同的个体相处,从而合理地为促进群体内的合作分配提供了重要功能。这种机制对信号和合作理论、幽默、社会认同、政治心理学以及人类文化复杂性的进化具有广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e865/5861109/0ea47e3408e0/41598_2018_22926_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验