Suppr超能文献

康复游戏:一种非沉浸式虚拟现实康复系统及其在神经科学中的应用

ReHabgame: A non-immersive virtual reality rehabilitation system with applications in neuroscience.

作者信息

Esfahlani Shabnam Sadeghi, Thompson Tommy, Parsa Ali Davod, Brown Ian, Cirstea Silvia

机构信息

Anglia Ruskin University, Department of Computing and Technology, CB5 8DZ, Cambridge, United Kingdom.

Anglia Ruskin University, Department of Medical Science, CB5 8DZ, Cambridge, United Kingdom.

出版信息

Heliyon. 2018 Feb 12;4(2):e00526. doi: 10.1016/j.heliyon.2018.e00526. eCollection 2018 Feb.

Abstract

This paper proposes the use of a non-immersive virtual reality rehabilitation system "ReHabgame" developed using Microsoft Kinect™ and the Thalmic™ Labs Myo gesture control armband. The ReHabgame was developed based on two third-person video games that provide a feasible possibility of assessing postural control and functional reach tests. It accurately quantifies specific postural control mechanisms including timed standing balance, functional reach tests using real-time anatomical landmark orientation, joint velocity, and acceleration while end trajectories were calculated using an inverse kinematics algorithm. The game was designed to help patients with neurological impairment to be subjected to physiotherapy activity and practice postures of daily activities. The subjective experience of the ReHabgame was studied through the development of an Engagement Questionnaire (EQ) for qualitative, quantitative and Rasch model. The Monte-Carlo Tree Search (MCTS) and Random object (ROG) generator algorithms were used to adapt the physical and gameplay intensity in the ReHabgame based on the Motor Assessment Scale (MAS) and Hierarchical Scoring System (HSS). Rasch analysis was conducted to assess the psychometric characteristics of the ReHabgame and to identify if these are any misfitting items in the game. Rasch rating scale model (RSM) was used to assess the engagement of players in the ReHabgame and evaluate the effectiveness and attractiveness of the game. The results showed that the scales assessing the rehabilitation process met Rasch expectations of reliability, and unidimensionality. Infit and outfit mean squares values are in the range of (0.68-1.52) for all considered 16 items. The Root Mean Square Residual (RMSR) and the person separation reliability were acceptable. The item/person map showed that the persons and items were clustered symmetrically.

摘要

本文提出使用一种非沉浸式虚拟现实康复系统“ReHabgame”,该系统是利用微软Kinect™和Thalmic™ Labs Myo手势控制臂带开发的。ReHabgame是基于两款第三人称视频游戏开发的,这两款游戏为评估姿势控制和功能性伸展测试提供了可行的可能性。它能准确量化特定的姿势控制机制,包括定时站立平衡、使用实时解剖标志方向、关节速度和加速度的功能性伸展测试,同时使用逆运动学算法计算末端轨迹。该游戏旨在帮助神经功能受损患者进行物理治疗活动并练习日常活动姿势。通过开发用于定性、定量和Rasch模型的参与调查问卷(EQ)来研究ReHabgame的主观体验。蒙特卡洛树搜索(MCTS)和随机对象(ROG)生成器算法用于根据运动评估量表(MAS)和分级评分系统(HSS)调整ReHabgame中的物理和游戏强度。进行Rasch分析以评估ReHabgame的心理测量学特征,并确定游戏中是否存在任何不匹配的项目。使用Rasch评分量表模型(RSM)来评估玩家在ReHabgame中的参与度,并评估游戏的有效性和吸引力。结果表明,评估康复过程的量表符合Rasch对可靠性和单维度性的期望。对于所有考虑的16个项目,拟合度和装备均方值在(0.68 - 1.52)范围内。均方根残差(RMSR)和人员分离可靠性是可接受的。项目/人员图显示人员和项目对称聚类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e4e/5857620/5a8cd19aff82/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验