California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, Califo, United States.
Massachusetts Institute of Technology, Institute for Medical Engineering and Sciences, Cambridge, Ma, United States.
J Biomed Opt. 2018 Mar;23(3):1-14. doi: 10.1117/1.JBO.23.3.036010.
Polymeric endovascular implants are the next step in minimally invasive vascular interventions. As an alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate the long-term complications of permanent implants, but in the short-term visualization and therefore positioning is problematic. Polymeric scaffolds can only be fully imaged using optical coherence tomography (OCT) imaging-they are relatively invisible via angiography-and segmentation of polymeric struts in OCT images is performed manually, a laborious and intractable procedure for large datasets. Traditional lumen detection methods using implant struts as boundary limits fail in images with polymeric implants. Therefore, it is necessary to develop an automated method to detect polymeric struts and luminal borders in OCT images; we present such a fully automated algorithm. Accuracy was validated using expert annotations on 1140 OCT images with a positive predictive value of 0.93 for strut detection and an R2 correlation coefficient of 0.94 between detected and expert-annotated lumen areas. The proposed algorithm allows for rapid, accurate, and automated detection of polymeric struts and the luminal border in OCT images.
聚合物血管内植入物是微创血管介入治疗的下一步。作为传统金属药物洗脱支架的替代品,这些通常可蚀性支架为患者和临床医生带来了机遇和挑战。从理论上讲,随着它们的吸收和吸收,它们避免了永久性植入物的长期并发症,但在短期内,可视化和因此定位是有问题的。聚合物支架只能通过光学相干断层扫描(OCT)成像进行完全成像 - 通过血管造影术它们相对不可见 - 并且 OCT 图像中的聚合物支柱的分割是手动完成的,对于大型数据集来说,这是一项费力且棘手的过程。使用植入物支柱作为边界限制的传统管腔检测方法在具有聚合物植入物的图像中失败。因此,有必要开发一种自动方法来检测 OCT 图像中的聚合物支柱和管腔边界; 我们提出了这样一种全自动算法。使用专家在 1140 个 OCT 图像上的注释对准确性进行了验证,支柱检测的阳性预测值为 0.93,检测到的和专家注释的管腔区域之间的 R2 相关系数为 0.94。所提出的算法允许在 OCT 图像中快速,准确和自动地检测聚合物支柱和管腔边界。