Suppr超能文献

连接组时代精神病学的机遇与挑战。

Opportunities and Challenges for Psychiatry in the Connectomic Era.

机构信息

Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne; Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne, Australia.

Department of Psychiatry, University of Cambridge, and ImmunoPsychiatry, Cambridge, United Kingdom; Department of Psychiatry Alternative Discovery and Development, GlaxoSmithKline R&D, Cambridge, United Kingdom.

出版信息

Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Jan;2(1):9-19. doi: 10.1016/j.bpsc.2016.08.003. Epub 2016 Aug 5.

Abstract

Most major psychiatric disorders arise from disturbances of anatomically distributed neural systems rather than isolated dysfunction of circumscribed brain regions. The past decade has witnessed rapid advances in our capacity to measure, map, and model neural connectivity in diverse species and at different resolution scales, from the level of individual neurons and synapses to large-scale systems spanning the entire brain. In this review, we consider how these techniques, when grounded in the theory and methods of network science, can contribute to a biological understanding of mental illness. We focus in particular on attempts to accurately map brain network disturbances in clinical populations and to model the mechanistic causes of these changes. This work suggests that pathology within highly connected hub regions is a consistent finding across a broad array of phenotypically diverse disorders, and that disparate changes in brain network organization can sometimes be explained by a surprisingly small and simple set of mechanisms.

摘要

大多数主要的精神障碍是由解剖分布的神经网络的紊乱引起的,而不是孤立的局部脑区的功能障碍。在过去的十年中,我们在测量、绘制和模拟不同物种和不同分辨率尺度的神经连接方面取得了快速进展,从单个神经元和突触的水平到跨越整个大脑的大规模系统。在这篇综述中,我们考虑了这些技术如何在网络科学的理论和方法的基础上,为精神疾病的生物学理解做出贡献。我们特别关注试图准确地描绘临床人群中的大脑网络紊乱,并对这些变化的机制原因进行建模。这项工作表明,在广泛的表型多样化的疾病中,高度连接的枢纽区域的病理学是一个一致的发现,而大脑网络组织的不同变化有时可以用一组非常小而简单的机制来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验